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ABSTRACT 
Software is increasingly produced in the form of ecosys-
tems, collections of interdependent components maintained 
by a distributed community. These ecosystems act as net-
work organizations, not markets, and thus often lack action-
able price-like signals about how the software is used and 
what impact it has. We introduce a tool, the Scientific 
Software Network Map, that collects and displays summa-
rized usage data tailored to the needs of actors in software 
ecosystems. We performed a contextualized walkthrough of 
the Map with producers and stewards in six scientific soft-
ware ecosystems that use the R language. We found that 
they work to maximize diversity rather than quantity of 
uses, and to minimize coordination costs. We also found 
that summarized usage data would be useful for justifying 
ecosystem work to funding agencies; and we discovered a 
variety of more granular usage needs that would help in 
adding or maintaining features. 
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INTRODUCTION 
Software ecosystems are collections of interdependent 
components maintained by a distributed community. Eco-
systems are an increasingly important way of producing 
software, but they inherently fail to provide participants 
with key information they need in order to decide how to 
allocate their effort.  The value of maintaining these ecosys-
tems is clear: ecosystems such as CRAN (the Comprehen-
sive R Archive Network), Eclipse, Android, and Node.js 
provide resources that facilitate software development 
work, allowing developers to use existing software compo-
nents, libraries, and frameworks developed and maintained 
by others. Software components are combined and extended 

to produce innovative functionality, yet the components are 
built and maintained by a large and diverse population of 
individuals, organizations, and communities [10].  

Ecosystems are “network” organizations [29], lacking the 
hierarchy of a firm, and eschewing explicit price-based 
transactions.  There is typically no centralized authoritative 
decision-making about where ecosystem members should 
spend their effort, and neither is there the classic market 
signal of price to let producers know where the greatest 
value can be created. Although network organizations 
transmit enormously rich information between neighbors in 
the network, this information is not summarized in an ac-
tionable way for questions of global scope for the network. 
Thus aside from those few products that become widely 
known and deployed, developers have very little infor-
mation about if and how their code is used, and are often 
surprised to find it is used more widely, by more people, 
and in different ways, than they realized [7]. 

In software ecosystems, developers typically write software 
that they themselves need, or that the companies that em-
ploy them need [21].  Participants are often willing to do 
extra work to turn the software they wrote for themselves 
into a resource the community can use [33], but are reluc-
tant to do so unless the community needs are clear and de-
monstrable. They have rather limited information about the 
requirements of the larger community, however, typically 
in the form of bug reports, feature requests, comments on 
mailing lists or social media [12], and perhaps work others 
are doing to modify forked copies of their code [21].  Gen-
erally a very small proportion of potential users contribute 
information in these channels, and surges of attention often 
represent an insider controversy rather than a reflection of 
widespread need [34]. 

Communities of scientists who share software provide par-
ticularly compelling examples of this information gap (e.g. 
[24,33]). Understanding and assuring compatibility and 
interoperability across these ecosystems presents a substan-
tial information and coordination challenge (e.g., [7,9,38]). 
Science increasingly depends on software for analysis, 
modeling, visualization, and storing and manipulating data.  
Yet resources for developing software are generally very 
scarce, so making good decisions about effort allocation is 
particularly critical.  Therefore, we selected a set of related 
scientific software communities in order to address the 
question: what can computer support systems offer to play 
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the informational role that prices play in markets, to help 
align effort allocation with needs in software ecosystems?  

We developed visualization tools – the Scientific Software 
Network Map (“the Map”) to allow scientists developing 
software to answer key questions about how much their 
software was used, and what other software it was used 
with.  The Map is designed to provide meaningful signals 
about whether maintaining and enhancing specific packages 
is worth the effort, and about potential interoperability is-
sues with other packages it is commonly used with. 

We evaluated the tool’s potential usefulness by first asking 
scientist-developers who write programs in the R statistical 
language to reflect on their current information-seeking 
practices. We then provided an instance of the tool using 
data from the R ecosystem, and allowed them to interact 
with it to answer any questions they might have.  We asked 
them to evaluate the tool with respect to their own needs. 
Their responses allowed us to evaluate the capabilities of 
the tool, as well as our underlying assumption that the sci-
entists are trying to maximize use of their software and 
minimize their development effort. 

Our interviews showed that scientists’ behaviors differed in 
some ways from what our simple market and price meta-
phor would suggest. The preference revealed by their be-
haviors was not for putting a greater quantity of better-
integrated packages in more hands for the least develop-
ment effort, but instead for providing for a greater quantity 
of distinct use cases, with the least coordination effort. 
Consistent with the preference for more use cases, they are 
primarily motivated to program for their own needs, or 
those of other researchers that are distinctive enough to 
possibly yield new collaborations or citations. Their ap-
proach is mostly reactive: scientists respond to their own 
needs or the needs of colleagues that draw their attention, 
but they are mostly not motivated to proactively research 
the “market” of potential users of scientific software to pro-
vide the greatest good for the greatest number. Our evalua-
tion suggested tool modifications to fit the needs of this 
ecosystem, i.e., a data collection and visualization tool 
should highlight variety of uses to incentivize development, 
and give more focused help with inter-project dependencies 
to lower the cost of coordination.  

RELATED WORK 

Software Ecosystems  
Lungu et al. [25] define a software ecosystem as: “a collec-
tion of software projects which are developed and evolve 
together in the same environment. The environment is usu-
ally a large company, an open-source community, or a re-
search group”. Other definitions (e.g. [27]) add the relation-
ships among the developers of those projects as part of the 
core definition, but both perspectives convey the idea of 
distributed actors collaborating with each other to build and 
maintain software projects that rely and depend on each 
other.  

A few studies exist that examine software assemblages and 
the human infrastructures supporting them as ecosystems 
[15,16,25,28,35]. These studies stress that software devel-
opment is making an important shift from standalone appli-
cations to ecosystems, where components within an ecosys-
tem work together as a platform for further construction. 

In a scientific software ecosystem, many scientists, who are 
primarily engaged in their scientific work, are also creating 
and maintaining software. Communities of scientists are 
migrating to such ecosystems, adopting a variety of names, 
including cyberinfrastructure, grid computing, collaborato-
ries, and eScience [2,23].   

Lee, Bietz, and Ribes [23] describe how, in cyberinfrastruc-
ture, requirements tend to evolve rapidly in response to new 
technologies and scientists’ diverse needs [23]. Bietz and 
Lee [3] explored the tradeoffs in the way these systems are 
adapted with work-arounds, from-scratch development, and 
extending existing cyberinfrastructures. 

Because the incentives for software sustainability in science 
can be missing or indirect [15,16], scientific software in 
some fields is characterized by redundant implementations 
of large monolithic codebases [5, 16], poor support, and 
infrequent maintenance. These effects come about for sev-
eral reasons, including heterogeneous needs and timing of 
different research projects [17], the tension between long 
and short term needs [30], and reluctance to be dependent 
on outside parties [6].  

Incentives, Visualization, and Impact 
Scientists are rewarded for scientific impact, measured (im-
perfectly) by things like publication counts and citation of 
papers.  Software plays a large and expanding role in ena-
bling science, but it is cited haphazardly in scientific writ-
ing [13,19].  For this reason, the scientific impact of the 
work of developing and maintaining a piece of software is 
often invisible to the community [16].  If the use of a soft-
ware package were made visible along with its impact in 
the form of publications it enabled, scientists could hope to 
receive credit for the scientific impact of their software 
work.  Recognition could provide a powerful incentive to 
do the extra work to make software useful to a broader 
community, just as recognition has done in online commu-
nities [20]. 

Besides this extrinsic motivation, it has also been observed 
[33] that knowing what other scientists need is intrinsically 
motivating to them: they share their software precisely be-
cause they perceive that others need it.  Usage data about 
scientific software has the potential to demonstrate to an 
author that they do have users who need their software, and 
this should motivate them to continue supporting and en-
hancing the functionalities that are most used. Knowing 
how and how much a package is used is very helpful in 
deciding what work is most worthwhile.   

In this paper we evaluate a tool aimed at two primary types 
of users [14] within scientific software ecosystems: the 
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software producer who writes software that could potential-
ly be used by others, and an ecosystem steward, who is an-
yone concerned with the health and unity of the set of pack-
ages as a whole, and how well they meet the needs of a 
scientific community.  

SCISOFT NETWORK MAP TOOL DESIGN 
The Map is designed to be populated from different ecosys-
tems’ software repositories. The interface uses d3 for the 
visualizations, and pyramid, mongo and jinja for the web 
and database framework.  Maps are designed to directly 
address the needs of scientific software producers and 
stewards for usage-related information about packages. The 
tool’s features include a usage graph over time, a filtera-
ble/sortable list of packages, a “co-usage” graph showing 
what packages were used together, and a listing of external 
software (e.g. end-user scripts and packages under devel-
opment) that depend on each package.   

The Map frames software contribution in terms of the posi-
tive impact it was having on others; we intended it to moti-
vate scientists to further this end; and in practice provide 
numbers and graphs that scientists could show to tenure 
committees or granting agencies in order to justify their 
work; it can also inform them of usage patterns to help di-
rect and prioritize development.  Visualizations in the tool 
include: 

PACKAGELIST: The main directory of packages emphasizes 
packages’ importance by usage or impact, by ordering 
packages by user-selectable measures of impact, and filter-
ing them by ecosystem. The measures include counts of 
uses, “recent” uses, distinct users, publication counts, and 
usage counts among users’ publically shared projects. Sci-
entific publication counts come from Scopus [31]. Besides 
simply serving as a directory and entry point to the tool, this 
listing is designed to draw scientists’ attention to the most-
used options in a fragmented field, centralizing attention 
and resources to provide better economies of scale and 
promote standardization. (via, e.g. rational herding [8]). The 
idea is to help align the incentives in the ecosystem, en-
couraging technical work on software that is actually used. 

CITELINKS: Links to the actual papers are available via 
Scopus. The intention is that producers could refer to these 
in a CV to show the impact of their work, or they could use 
it to channel their efforts into their most-cited packages. 
Stewards could use it to show the overall benefit of the eco-
system to grantors. It could also help producers see which 
of their colleagues are citing different packages, and read 
the papers to see how they are being used. 

USEHISTORY (Figure 1(b)): The Map can also depict usage 
history over time for a user-selected set of packages, show-
ing how many users were using different versions of the 
software at each point in time. This visualization is de-
signed to help producers track trends in their package’s use, 
and thus demonstrate to others that their ecosystem contri-
butions are being used; it can help stewards maintaining 

sets of shared packages spot trends such as emerging use of 
new packages or shifting adoption of new versions. It could 
also help them make decisions about allocating resources 
and making packages available. 

USERPROJECTS: The tool lists projects that rely on each 
package.  We designed this facility to allow producers to 
see how their package is being used by end users, not just 
by the other packages in the ecosystem, and drill down to 
the level of specific lines of source code that call their 
package’s API, on the theory that being aware of specific 
end-user usage patterns might prompt producers to put 
more time into developing the more popular packages or 
parts of their packages.  It could also allow end users to find 
concrete examples of how other users may have used these 
packages.  

COUSAGE: This feature (Figure 1(a)) depicts which packag-
es were most commonly used together, on the theory that 
software integration/compatibility work should be consid-
ered as a valuable scientific contribution: if scientific end 
users often find themselves trying to integrate the functions 
of two packages, then producers of those packages could 
potentially assist in the work of those end user scientists by 

(a) COUSAGE

(b) USEHISTORY 

Figure 1. Two features of the Map: (a) co-usage visualization 
of software artifacts (nodes), frequency of use (node size), fre-
quency of use together (edge width), type of dependency (dot-
ted =  logical; solid = formal), and relevance to the focal pack-
age of the diagram. (orange = only used with apex; blue = also 
used when apex not used).  The bar graph at right shows the 

data in another form: bars show how many projects using the 
focal package also used some other package. (b) Number of 

runs of each version of a package over time. 
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making their packages work together more easily, adding 
things like data structure conversions, documentation rele-
vant to those circumstances, or code that adheres to stand-
ards typical of that environment. Stewards can also see 
which of their packages merit better interoperability efforts, 
and end users can get ideas for useful software combina-
tions from their colleagues.   

This view depicts the neighborhood of a single package in 
the graph, and allows navigation to neighboring packages in 
the graph. It shows static dependencies (packages that re-
quire others as prerequisites), and logical dependencies 
(packages that users chose to use together to solve some 
problem). To keep the graph readable, links with low 
pointwise mutual information are pruned: so that, for ex-
ample, a package G that is very popular, and whose use is 
uncorrelated with the use of package P, is unlikely to be 
shown in the COUSAGE graph’s for package P. 

Data presented by the Map 
R is a computer language specialized for statistical compu-
ting.  A user starts it up from the command line or by run-
ning a graphical environment like RStudio [1]. From there, 
they can run scripts that they or others have written, or type 
commands directly at a prompt.  The scripts or commands 
may in part rely on functionality provided by packages.  R 
has a rich ecosystem of many thousands of specialist plugin 
packages for advanced statistical techniques, machine 
learning, and domain-specific areas from bioinformatics to 
fishery science. Packages are units of software functionality 
that are typically written by scientists who need them for 
their own work, freely shared through websites like 
cran.org and bioconductor.org, and are easy for users to 
install. There are sub-ecosystems of packages, nested with-
in the larger R ecosystem, that manage their own interde-
pendent collections of related packages. 

We created an instance of the Map with data from three 
open software repositories containing R software (CRAN, 
Bioconductor, and Github, using the mirror GHTorrent 
[11]). We are collecting data on an ongoing basis of the 
package usage of over 100,000 R-language end-user scripts 
and other projects shared on Github, a platform for sharing 
source code of open-source software.   Map downloads the 
code for new or changed projects once a day, and examines 
which packages they were using. 

Some programmers use Github to store their source code 
even for small projects whose adoption they may not be 
actively trying to promote, because of its convenience and a 
principled desire to work openly. It thus captures a range of 
uses that overlap with scientific usage. As we shall see be-
low, stewards had different takes on the appropriateness of 
Github data depending on their ecosystem. 

To link academic citations with packages, we read a 
metadata field that many R packages provide that suggests 
a canonical citation for users to refer to. We look up citation 

counts to these papers in Scopus [31] on a rotating basis, 
approximately every two weeks.  

STUDY 
The Map is available as an online web application 
(http://omitted.for.anonymity), with more than 2000 users 
(as measured by Google Analytics) since its introduction 
earlier in 2015.  It has been instantiated for two ecosystems: 
the R statistical language, and the ecosystem of supercom-
puter applications available at the Texas Advanced Compu-
ting Center (TACC).  

In this study we evaluate the Map in the context of the R 
ecosystem, asking producers and stewards in sub-
ecosystems of R about their current practices, and evaluat-
ing in a walkthrough how the tool could help them. We 
address the following research questions: 

RQ1 Did usage and impact information help to motivate 
scientists to do the work of scientific software construction 
and integration, and help them justify this work to the deci-
sion-makers they answer to? 

RQ2 Did software producers and stewards consult usage 
information to weigh cost/benefit decisions about what 
software work to do and how to prioritize it? 

RQ3  Did information presented in the tool fit interviewees’ 
mental models of their ecosystems?  What do any differ-
ences imply about how usage data should be collected and 
presented? 

METHOD 
We sought out interviews with people involved in R eco-
systems who were directly responsible for adding, remov-
ing, and maintaining software. We operationally defined 
“ecosystem” as a set of packages for which there was evi-
dence of a common purpose, and of an organization or 
community, with a website, advocating for adoption or in-
teroperation of the packages. 

In these ecosystems, we interviewed package producers 
(identified as people listed as the maintenance contact for a 

Impact 
What do you do to estimate usage and impact?  
What do you do with that information?  

Users and their needs 
How do you find out and prioritize what needs work?  

Coherence/Co-usage 
What work do you do towards interoperability of packages?  
Do you reject or prune packages based on duplicate functionali-
ty? (Stewards only) 
How do you find out what interoperability issues need work?  

Evaluation 
How would you use the information presented in the tool?  
Does it seem correct?  
What is missing that would make it more useful?  

Figure 2. Semi-structured interview topics for package pro-
ducers and ecosystem stewards 
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published R package) and ecosystem stewards (identified as 
individuals listed as contacts on the ecosystem’s web page).  
In the organizations we considered, ecosystem stewards 
were also producers since they were writing code, both for 
their own scientific reasons, but also in promotion of stand-
ard data structures or interfaces within the ecosystem. We 
did not attempt to interview users or people with other roles 
in the ecosystems, since they contribute to the software only 
indirectly.  

We interviewed 12 people, listed in Table 1. The interview 
was designed to evaluate the software by a contextualized 
walkthrough: we first asked them about their current prac-
tices, then walked them through the screens of the tool, 
showing them displays of their own packages’ usage, im-
pact, and relationship with the ecosystem, and asked them if 
it could replace or augment their practices. We followed a 
semi-structured interview format, with questions (Figure 2) 
derived from the list of information needs for collaborators 
in software ecosystems as described in the related work 
section and in Howison’s enumeration of information needs 
[14]. Questions about the tool focused on the intersection of 
issues that came up in the current practice part of the inter-
view, and ecosystem data viewed via the Map.  

We wanted to interview producers whom we thought were 
likely to have encountered different kinds of issues where 
information about use is important.  We selected five inter-
viewees from attendees of the NEScent Population Genetics 
hackathon [22], which was in part aimed at improving in-
teroperability among R packages for phylogenetics and 
related fields, since understanding use is key to interopera-
bility. We also interviewed two producers of different gen-
eral-purpose packages, with large and varied user commu-
nities who could be using the packages for highly varied 
purposes.   

We also interviewed five ecosystem stewards, individuals 
listed as having central roles on the websites of four other R 

ecosystems of varied sizes and domains: Bioconductor (a 
very large set of biology-related packages, with 1023 soft-
ware packages, plus 1122 data packages); FLR (for evalua-
tion of fishery modeling and management strategies with 9 
packages), rOpenSci (which facilitates open data and repro-
ducible research with 87 packages), and rOpenGov (which 
facilitates access to government data sources with 32 pack-
ages).  

RESULTS 
This section is organized around the three research ques-
tions: (RQ1) motivating and justifying ecosystem develop-
ment work in general, (RQ2) determining and prioritizing 
what particular work to do, and (RQ3) tool differences from 
users’ mental models.  

Justifying and Motivating Development  
Producers’ practices  Producers needed data to justify their 
work to decision-makers, but the specifics varied.  They did 
not mention sources of data that were motivating to them, 
but instead described abstract motivations such as reciproci-
ty, scientific accuracy, and helping other users.  

Producers were varied and unsystematic in what infor-
mation they attended to and used to justify their work on 
software. Some of them said they needed to provide evi-
dence that their work had impact, but the evidence they 
currently rely on varied, and none of them expressed doubt 
that they would be able to satisfy this need with their cur-
rent practices. 

Some producers mentioned tracking citations to their soft-
ware or to a related paper they asked users to cite: 

At some point, within this next release, I'm hoping to 
have some sort of publication announcement, a vignette or 
something, that I can point to as a citable reference. And 
that will be a bit of a justification as well. [P-Gen-1] 

So, this is part of my thesis, and I do have to justify it, 
but it is published [as a methods paper], and methods pa-
pers are always highly cited. So I can justify it by saying, 
"This will always be my highest cited paper," because it's 
already gotten 14 citations within the past year, and it's 
only been out for a year. [P-Gen-4] 

One package author said that other packages came to rely 
on his package (a relationship which is easy to see in 
CRAN), and this had helped get him his current job: 

I think the post doc here I got more or less because I 
have this package out. [It] has ten packages which depend 
on it. So, that’s kind of a sign that it’s important. [P-Gen-3] 

Producers, in short, relied on whatever information about 
impact was available and salient to justify their work but 
were not particularly eager to find better sources of infor-
mation.   

Producers’ impact on others’ scientific efforts was also per-
sonally motivating for them. Their reasons were abstract, 
focusing on helpfulness, correctness and reciprocity, rather 

Ecosystem Purpose Interviewees 
Bioconductor 

www.bioconductor.org 
Bioinformatics 2 Stewards  

(S-Bio-1,2) 
FLR 

www.flr-project.org 
Fishery man-

agement  
1 Steward  
(S-FLR-1) 

rOpenSci 
ropensci.org 

Open data, 
reproducible 

science 

1 Steward  
(S-Sci-1) 

rOpenGov 
ropengov.github.io 

Government 
data 

1 Steward  
(S-Gov-1) 

(no name) 
github.com/NESCent/r-

popgen-hackathon 

Population 
Genetics 

5 Producers  
(P-Gen-

1,2,3,4,5) 
CRAN 

cran.r-project.org 
General pur-

pose 
2 Producers  
(P-Cran-1,2) 

Table 1. The twelve interviewees. Participants’ codes represent 
their role and ecosystem affiliation 
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than mentioning particular metrics as they did when dis-
cussing justifications. 

One described the reciprocity of sharing as motivating re-
gardless of whether it was actually helpful: 

To be honest, I do not really think about whether it is 
helpful or not. It is certainly helpful to the work I am doing, 
and I was happy to share this […] in the same spirit as oth-
ers share their work/packages in the R community. [P-
Cran-2] 

Another spoke vaguely of what “might be helpful”, but did 
not elaborate on ways of verifying that the code was really 
helpful: 

I thought, "Hmm, well, then, perhaps others might find 
this helpful too, and it's yet another thing which will be out 
there," and I made it available. [P-Cran-1] 

A third was more specific about what might be helpful: 
improving others’ results: 

They’re using methods that are giving them the wrong 
answer. We think that our method will give them better an-
swers will give more correct answers. So, we want the an-
swers that people publish to be right. [P-Gen-2] 

Producers’ evaluation  The USEHISTORY, PACKAGELIST, 
and CITELINKS features of were designed to help demon-
strate the scientific impact of software, and producers’ reac-
tions to it suggests that they perceived the kinds of data 
provided as useful, with some caveats about the details of 
our implementation. In the Map walkthrough, we started off 
most interviewees by showing them the PACKAGELIST, fil-
tered to their ecosystem and sorted by one proxy for “us-
age”: the number of Github projects which referred to the 
package.  

Interviewees were accustomed to using citation counts to 
justify their work, and liked the convenience of having 
them listed for each package. However they were almost 
universally critical of our choice to use Scopus counts in 
contrast to Google Scholar.  Google scholar seems to be an 
approximation that interviewees preferred: it casts a wider 
net and errs on the side of false positives rather than false 
negatives.  We know this because the critiques were quite 
pointed: when Scopus was unable to recognize a citation in 
order to count references to it, authors expressed concern 
about their software getting short shrift: 

It's a bit strange...I know of many papers which cite my 
package (the software documentation) so it should really 
count them (but Scopus seems not to). [P-Cran-2] 

Unfortunately, Google Scholar’s terms of service prohibit 
automated search for citations. 

As for motivation, one producer stated a direct motivation 
from evidence of surprisingly broad co-usage to do im-
provement work on his package: 

I'm really getting nervous when I see that so many 
people use that package. [Laughter] That should really 
motivate me to revisit the code and actually make it numer-
ically more stable [P-Cran-1] 

Producers commented on the convenience of several fea-
tures that were consistent with their abstract motivations: 
high usage of a package could suggest to an author that it 
has been helpful or that the act of reciprocity has been ac-
cepted by a community; and the ability to find and examine 
uses of one’s package could help reassure an author that 
people are improving their work by correctly employing a 
package’s features. 

Stewards’ Practices Ecosystem stewards drew from more 
varied information sources about impact than producers did, 
and put more effort into synthesizing the information into 
coherent reports for granting agencies and other decision-
makers.  

S-FLR-1, for example, said their organization tries to esti-
mate counts of individual and organizational users.  They 
count organizations that published “grey literature” that 
mentioned FLR software, they count attendees and their 
sponsoring organizations at workshops, and tally personal 
contacts to produce numerical estimates of numbers of at-
tendees.  

Other stewards did not try to produce unified estimates of 
number of users, but instead drew on many sources to pro-
duce reports and proposals to granting agencies; making 
graphs, charts and tables summarizing data that was evi-
dence of widespread usage, interest, and scientific impact of 
ecosystem packages.  Measurements they mentioned in-
cluded number of attendees at workshops and training clas-
ses they had sponsored, numbers of citations for popular 
packages in Google Scholar; number of results returned 
from keyword searches in academic and grey literature; 
volume of activity in discussion boards, mailing lists, and 
twitter mentions; number of emails and personal contacts at 
conferences; package download counts, and website visits. 
In the Discussion section we suggest how the Map might be 
extended to help with some of this data gathering. 

Stewards Evaluation  Stewards generally liked the idea of 
having this kind of information collected together in one 
place: 

This is the kind of thing we need to think about to be 
fairly honest. [S-Flr-1] 

I think it’s important to know how [the packages] are 
used. Especially when we are developing and maintaining 
multiple packages, it’s really good to have this kind of 
overview. And if you have 10 or 20 or more packages, what 
of them are the most dominantly used? And I’m sure it can 
easily happen when some packages don’t really find users 
and some might become very popular. And I think it’s quite 
useful to be able to distinguish them according to the usage. 
[S-Gov-1] 
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We did not show USEHISTORY to all the users, but one 
steward showed interest in the data, commenting that they 
had not pursued similar data that was already available to 
them, but would have taken some work to extract: 

We can recover the download stats [but] I don’t think 
we have ever really looked at it. It would be interesting to 
know for us [S-Bio-1] 

Choosing development needs and setting standards 

Community needs 
Producers’ practices We asked producers how they knew 
what features to add to their packages, and the practices 
they described were mostly reactive: that is, they worked on 
new use cases that came to their attention rather than proac-
tively seeking out user needs for new or improved features. 
New use cases came primarily from their own research 
needs, but also from user requests that struck them as easy, 
interesting, or fruitful, and from incompatibilities that they 
scrambled to fix when other neighboring packages were 
updated. 

Use cases mostly came from our own research re-
quirements. [S-Bio-2] 

I developed for myself because it didn't exist, and I fig-
ured it was a general enough issue that other people could 
use it. [P-Gen-1] 

Interviewees agreed that priorities for the ecosystem as a 
whole was a broad diversity of uses, driven by the individu-
al package authors meeting their own research needs: 

It’s very weakly defined by a central vision, and much 
more so defined by the agendas of the individual contribu-
tors. [S-Bio-2] 

But besides providing for their own research needs, produc-
ers did describe ways that the needs of others fit into their 
practices, mostly in response to direct, usually time-
sensitive requests from other ecosystem actors or automated 
tools.  

The CRAN repository has semi-automated mechanisms for 
alerting package authors when a change in a neighboring 
package, or R itself, causes an incompatibility. One produc-
er told us this was almost the only time he updated his 20-
year old package now: 

R itself changes so that packages don't work anymore: 
there are these quality-control tests that the R maintainers 
have imposed, and then you are forced to do some changes. 
[P-Cran-1] 

CRAN’s policies require some trust between producers. 
Their policy is to “archive” any package that does not re-
spond quickly enough to an email from the CRAN team 
saying that it has failed a test [26]; so if a producer chooses 
to rely on another package, and that other package’s main-
tainer falls behind on maintenance, the producer’s own 
package may fail to install for new users. 

Producers also described receiving emails or other contacts 
from users with problems or feature requests, or saw ques-
tions come in specialist discussion forums. 

I have created a Google group, a forum for people to 
ask questions about [package] [P-Gen-4] 

I would say that the bug reports are the most common 
type of contact. [S-Gov-1] 

Producers were motivated by personal contact with some-
one with a problem or idea, rather than on any systematic 
attempt to estimate the number of (potentially silent) users 
with different kinds of needs. One package author strongly 
emphasized this interest in particular issues rather than 
global information about the user base: 

"Users needs" is a tricky thing in open source R pack-
ages...It is not something I will anticipate (I am not a com-
mercial software vendor), nor do I care to. However, if a 
request is made which seems reasonable and not too time 
consuming, then I will usually oblige. [P-Cran-2] 

Most interviewees did not elaborate on which use cases 
they cared about in particular, although there were sugges-
tions that they considered dealing with others’ needs to be a 
cost, to be weighed against a benefit:  

When you develop something like a package, it be-
comes almost a burden. Because suddenly, you have all 
these people who need your help with their specific little 
problem. And you wanna be able to help them because that 
means that your paper gets cited. [P-Gen-2] 

From time to time, I get requests of, "Can this be done? 
Can that be done?" And if I am not able to do the changes 
easily, then it goes pretty far down on the list of things. If it 
is something that actually could produce a paper or some 
collaboration, it would be more motivating to do this 
change [P-Cran-1] 

It could be that producers’ apparent interest in addressing 
particular new use cases, rather than proactively counting 
kinds of users, is because a single, distinctive use case is 
more likely to be scientifically interesting, both to the pro-
ducer as a collaborator, and to the rest of the community, 
resulting in a citation.  In contrast, student educational use, 
as well as further examples of “typical” uses, may be less 
interesting and less likely to lead to new science and new 
citations. 

But fixing other people’s problems was also a moral obliga-
tion for some: 

I do feel like, for me, it’s a moral responsibility. I don’t 
want there to be any mistakes in the code and if somebody’s 
having trouble with a dataset, maybe there’s a mistake and 
I need to find it. [P-Gen-2] 

Producers’ evaluation Producers’ reactions to the tool and 
their current practices suggest that software usage statistics 
would be most useful to them in understanding the needs of 
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other users, if we provided them in a more granular form. 
When examining the tool as it exists, they imagined that 
they would use it to answer very specific questions about 
usage driven by tasks initiated for other reasons, for exam-
ple to check how commonly people are using some method 
whose interface they wish to change.  

One producer imagined how he could use USERPROJECTS to 
get more specific information about how his packages were 
being used: 

You could kind of get an idea of what they are using 
the package for. Many citations I get are more or less for a 
few functions, which seem to be comfortable to do in [my 
package] in comparison to another program. So, [you 
could] look up what they are using it for, maybe adjusting 
some model comparison or a very specific function. [P-
Gen-3] 

Two producers mentioned wanting to be able to query 
USERPROJECTS for a particular abstract functionality, and 
see all the packages where that function was performed.  

I mean would it be absurd to actually work out which 
functions are used and which packages they belong to? [P-
Gen-5] 

Standards and duplication of effort 
Producers’ practices Several producers described doing 
careful research into the ecosystem’s package offerings at 
the start of a new project, when deciding whether to add 
functionality to the ecosystem or relying on existing func-
tionality. Interviewees searched, sometimes extensively, for 
related software to build on, rather than starting from the 
assumption that they would build everything from scratch. 

Although they did search to see if functionality was already 
available before writing their own code, producers weren’t 
averse to duplication of functionality if it made things more 
convenient. One author sought out implementations of two 
algorithms, Hierarchical F-statistic and AMOVA (Analysis 
of MOlecular VAriance), among phylogenetics packages.  
He found them in different packages, but realized it would 
be better for users if he re-implemented both:  

That's much easier for a user. … They run one func-
tion, and they get one data frame result. If they have multi-
ple packages then they have to combine them, then, say, the 
names of populations get changed, or the formatting is 
changed... It just becomes more work. [P-Gen-1] 

Coincidentally, a very similar situation came up for another 
producer involving the same statistic; in this case, the pro-
ducer showed a preference for development effort over co-
ordination effort: 

I was using Hierfstat to estimate FST but I had to rear-
range my data in a way that Hierfstat would take it. And so, 
I ended up just writing my own code estimating FST so that 
I didn’t have to rearrange my data and I didn’t have to send 
[Hierfstat] this other patch. [P-Gen-2] 

Stewards’ practices Keeping packages working together 
requires the work of software producers, but stewards set 
the ecosystem rules that determine what is expected of pro-
ducers, how it will be enforced or encouraged, and how 
much work will be involved. In the case of CRAN, there is 
considerable cost to a producer of meeting the basic re-
quirements of submitting a package.  There is an R package 
called devtools [37] with the sole purpose of building and 
testing a submission of R code to evaluate it with respect to 
CRAN’s requirements for compatibility with R itself and 
with neighboring packages; the instructions for using this 
package describe the process as “frustrating, but worth-
while”, because “CRAN provides discoverability, ease of 
installation and a stamp of authenticity.” [36] 

This burden can be a disincentive to producers, as men-
tioned above. 

I should actually have some incentive of getting all my 
packages updated and better […] but then it's a question of 
how to do it so that it don't break the code that other people 
wrote to use it. [P-Cran-1] 

All of the ecosystems inherited the basic technical coher-
ence of the R platform, but stewards also echoed what pro-
ducers told us about the importance of an ecosystem having 
shared standards, especially common classes: 

What we’d like to see is people reusing the fundamen-
tal objects and attitudes that we’ve sort of founded the pro-
ject on. But there isn’t a lot of enforcement there. There’s a 
lot of recommendation. [S-Bio-2] 

Some stewards, like the core team of Bioconductor, actively 
nudge new contributors towards reuse of standard classes.  
rOpenGov and FLR both grew out of single packages, and 
so also have standard classes they can ask contributors to 
reuse. rOpenSci focuses on building community around 
common goals and themes, but S-Sci-1 also reported work-
ing towards cohesion:  

A number of our packages for interacting with Web 
services for scholarly articles: … each of those has a slight-
ly different programmatic interface. And so I’ve been work-
ing on a client that will integrate across all of those and so 
the user only has to learn one thing [S-Sci-1] 

Stewards thus face a tension between creating strict in-
teroperation standards, thereby risking too much extra work 
for producers, on one hand, versus the risk of allowing in-
compatibilities to leak through to users of the ecosystem, on 
the other hand.  

Producers addressing their own needs led to some duplica-
tion of functionality, and ecosystem stewards did not worry 
much about such duplication either: 

You can contribute a package; it goes through a cer-
tain amount of quality control. There isn’t a lot of attention 
to semantic overlaps between functionalities. I’m sure 
there’s some. [S-Bio-2] 
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On the other hand there is a recognition of the value of re-
ducing duplication by adopting standards: one steward de-
scribed how the core group nudged their ecosystem to settle 
on one of two competing classes: 

It is possible that the group that has made the compet-
ing tool chain are still using that. You don’t require them to 
use the [standard] one, but we have a lot more documenta-
tion and demonstration. And our fundamental location re-
sources use the one that came out of the core, so that’s sort 
of what drives the energy toward that particular solution. 
[S-Bio-2] 

Producers’ and stewards’ evaluation Producers saw some 
features of the Map as being useful for exploration of relat-
ed packages when considering adding new functionality; 
this seems to be a key point where duplication can creep in 
if search is too difficult: 

There are packages there that I've never heard of. And 
it might show me that there's something else that I could 
use. [P-Gen-5] 

One producer imagined that he could look through 
USERPROJECTS to see how other projects were accomplish-
ing a task, to see whether he should reuse some existing 
function, or implement something new: 

So should I have a wrapper in [my package] for some-
thing, say, that's in [a common package]? Or do I even 
need to have that function in [my package]? Can I just drop 
it because it's fully handled in [the common package]? [P-
Gen-1] 

Stewards’ ideas about how to use the Map suggested that it 
could help with their goal of nudging producers towards use 
of standard packages. In particular some stewards saw 
COUSAGE as useful for guiding documentation and user 
training development. 

One steward told us he thought examples of how to use 
packages could be drawn from what COUSAGE reveals 
about the variety of contexts in which the package was 
used. In our interview, we showed him a package in his 
ecosystem, and he was surprised to see it often used with a 
set of packages he’d never heard of: 

If we knew people were using those, we could do tuto-
rials with those, kind of demonstrate: this is how you do 
some sort of analysis to make a plot or whatever it is that 
people do with that [S-Sci-1] 

S-Gov-1 also saw COUSAGE as a way of gathering common 
use cases for training or improved documentation: 

We can also use that to think how to communicate the 
different projects. And maybe the documentation is more 
important for the more common projects. [S-Gov-1] 

How data matched interviewees’ expectations 
Interviewees questioned two aspects of the portrayal of 
their ecosystems: which “used-with” relationships were 

most important, and whether largely-duplicated projects 
were properly considered as “usage”. 

COUSAGE Generally, interviewees found the COUSAGE 
visualization informative once they understood it, but con-
fusing at first. We struggled to find the right way to prune 
this visualization to a reasonably “important” neighborhood 
of a package, and in some cases the results were not intui-
tive. In particular, we used a pointwise mutual information 
measure to prioritize relationships, but among Bioconductor 
packages, this resulted in some visualizations showing very 
low-frequency neighbors: 

It’s pretty clear that you’re working with people that 
have very specific focuses… I don’t know that much about 
it, but this package is definitely not going to be one of the 
dominant users of BiocGenerics. [S-Bio-2] 

S-Bio-1 suggested that the graph should be viewer-
dependent, emphasizing connections to very domain-
specific packages useful for scripting when displaying the 
graph to an end user, and favoring internal utility packages 
when displaying to producers of packages. 

Some were surprised not to see things they expected: 

Yeah, it makes sense. I’m somewhat surprised we don’t 
see the other rOpenGov packages. Because I think they are 
probably used with Sorvi also. At least I have been using 
them with Sorvi. [S-Gov-1] 

A general limitation of the data set we used which was most 
apparent in this visualization was that for rarely used pack-
ages (or, rarely used in Github scripts), the relationships 
were drawn from a very small sample of uses. A small eco-
system steward phrased this positively: 

The more commonly the package is used, the more use-
ful this is. And I think it’s also good to start to collect this 
early on. [S-Gov-1] 

Inclusion of usage data Interviewees were sometimes con-
cerned about automatically duplicated projects distorting 
the dataset.  

USERPROJECTS included “forks” (copies of projects, possi-
bly modified); this caused some interviewees to ask if the 
counts in PACKAGELIST also counted forks (they did); they 
felt these should not be included. We had expected that a 
highly-forked project would be welcome evidence of more 
usage, but interviewees seemed to consider forks irrelevant 
noise.  

Another interviewee drew our attention to a distinction be-
tween scientific use and educational use. In our examina-
tion of the data, school assignments in Github were often 
quite repetitive, with many students’ work showing up as 
having similar filenames and imports. One steward worried 
that school assignments were being counted. These rarely 
showed up in our walkthroughs with interviewees, howev-
er, since the most highly forked Github R school assign-
ments we examined happened to almost never use any R 
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packages. However this could be a concern in the future if 
other sources of usage data tap into data from course as-
signments that do encourage students to use packages. 

One producer raised the question of the time span over 
which usage data was aggregated: P-Cran-1 at first doubted 
the accuracy of PACKAGELIST because a new, highly effi-
cient package appeared so far down the list. This suggests 
that an option to show a more recent “window” of usage 
could better depict the ecosystem’s current status.  

Some stewards also suggested that different data sources 
are appropriate for different communities. S-Flr-1 thought 
Github was an appropriate source because they encourage 
their users to use Github; but S-Sci-1 thought Github users 
might be atypical of rOpenSci users. 

DISCUSSION 

Tradeoff of development effort and coordination costs 
Producers repeatedly described adding whole packages, and 
incremental functionalities, simply because it was incon-
venient to reuse existing functionalities. Rather than trying 
to build consensus with authors of existing packages, they 
preferred to duplicate effort.  

The tolerance for duplication is less surprising when con-
sidered in terms of the way scientists in this ecosystem 
think of costs and benefits.  The benefit that they are trying 
to maximize is scientific impact, and it is often distinctive 
use, not repetitive use, that is more likely to contribute to 
novel, innovative results. So perhaps it is not surprising that 
scientists lean towards reimplementation of a function to 
get exactly the functionality they want, as opposed to mak-
ing do with existing offerings.   

As for the costs, our evidence indicates that the costs of 
coordinating with others often outweigh costs of developing 
lines of code. Prior research suggests that two factors in R 
ecosystems make coordination particularly expensive: First, 
many R producers are scientists, and Ribes et al. [30] point 
out that coordination among scientists can be difficult be-
cause of misalignment of their time schedules for research. 
Secondly, CRAN asks authors to test all dependencies with 
the latest versions of other packages when submitting up-
dates to the repository [26] with every update. A failed test 
risks having their package dropped from the repository. 
This makes unresponsive collaborators a risk, compared 
with an ecosystem like Node.js in which packages can safe-
ly refer to previous, known versions of other packages, and 
update on their own schedule [4]. 

IMPLICATIONS FOR DESIGN 
Overviews of relationships between packages are useful for 
stewards, and for deliberate efforts like hackathons; but for 
common development tasks, producers need (1) concrete, 
granular information to reduce coordination cost: for exam-
ple exactly which functions are being used by which other 
packages and how, and (2) motivating information about 
distinctive use cases and patterns, rather than only raw us-

age: for example perhaps a map whose elements are distinct 
configurations (collections of packages used together, like 
the persona glyphs described by Terry et al [32], clustered 
to show fields of similar use cases. (3) Ways of sorting and 
filtering by functionality, for example searching for meth-
ods and classes by name or words in the documentation. 
This would help with the duplication of effort problem, by 
making good information available at the key moment in 
time when a would-be package author decides whether to 
start a new package or extend an old one.   

For stewards, the breadth of sources they drew on in char-
acterizing ecosystem usage suggests many possible new 
data sources for extending the Map: counting and summa-
rizing references to packages in social media such as email 
lists and twitter; ways of extracting textual references in 
blog posts, academic papers, grey literature, etc; statistics 
from visits, searches, and downloads from websites con-
trolled by the ecosystem; and ways for core ecosystem peo-
ple to mine their own email and contact software to charac-
terize the number and volume of people they interact with 
about packages. 

CONCLUSION 
In this paper we have introduced the Scientific Software 
Network Map, a tool designed to provide price-like signals 
of usage to participants scientific software ecosystems, to 
help them justify, motivate, and direct software work for 
the benefit of users of the software. We evaluated how the 
Map might help ecosystem participants, and gathered in-
formation about their current practices: 

• Providing summaries of usage as a proxy for “price” in 
a software ecosystem has potential to help with a varie-
ty of tasks, but the signals must be chosen carefully. 
Producers’ practices appear to work to maximize diver-
sity of use cases and minimize coordination costs, so 
usage statistics that count duplicate uses may be less 
motivating than ones that count only distinct uses.  

• Ecosystem stewards already present a variety of statis-
tics about usage to justify funding for ecosystems; the 
Map could provide welcome support for collecting, ag-
gregating, and presenting these price-like signals. 

• Although the R ecosystem decomposes naturally at the 
level of “packages”, for whom individual maintainers 
are held responsible, for the purpose of understanding 
user needs, usage statistics at a finer level of detail: 
particular functionalities, data structures and interfaces, 
could help producers decide which parts of their pack-
age it is safe to change.  

These insights should lead to better information tools for 
scientific software communities, and we hope that these 
better tools in turn continue to reinforce the powerful mag-
nifying effect that software has on science.   
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