
 1

Guiding Development Work Across a Software Ecosystem
by Visualizing Usage Data

1st Author Name
Affiliation

City, Country
e-mail address

2nd Author Name
Affiliation

City, Country
e-mail address

3rd Author Name
Affiliation

City, Country
e-mail address

ABSTRACT
Software is increasingly produced in the form of ecosys-
tems, collections of interdependent components maintained
by a distributed community. These ecosystems act as net-
work organizations, not markets, and thus often lack action-
able price-like signals about how the software is used and
what impact it has. We introduce a tool, the Scientific
Software Network Map, that collects and displays summa-
rized usage data tailored to the needs of actors in software
ecosystems. We performed a contextualized walkthrough of
the Map with producers and stewards in six scientific soft-
ware ecosystems that use the R language. We found that
they work to maximize diversity rather than quantity of
uses, and to minimize coordination costs. We also found
that summarized usage data would be useful for justifying
ecosystem work to funding agencies; and we discovered a
variety of more granular usage needs that would help in
adding or maintaining features.

Author Keywords
Software ecosystems; Scientific software

ACM Classification Keywords
H.5.3 Group and Organization Interfaces: Computer sup-
ported cooperative work; D.2 Software Engineering

INTRODUCTION
Software ecosystems are collections of interdependent
components maintained by a distributed community. Eco-
systems are an increasingly important way of producing
software, but they inherently fail to provide participants
with key information they need in order to decide how to
allocate their effort. The value of maintaining these ecosys-
tems is clear: ecosystems such as CRAN (the Comprehen-
sive R Archive Network), Eclipse, Android, and Node.js
provide resources that facilitate software development
work, allowing developers to use existing software compo-
nents, libraries, and frameworks developed and maintained
by others. Software components are combined and extended

to produce innovative functionality, yet the components are
built and maintained by a large and diverse population of
individuals, organizations, and communities [10].

Ecosystems are “network” organizations [29], lacking the
hierarchy of a firm, and eschewing explicit price-based
transactions. There is typically no centralized authoritative
decision-making about where ecosystem members should
spend their effort, and neither is there the classic market
signal of price to let producers know where the greatest
value can be created. Although network organizations
transmit enormously rich information between neighbors in
the network, this information is not summarized in an ac-
tionable way for questions of global scope for the network.
Thus aside from those few products that become widely
known and deployed, developers have very little infor-
mation about if and how their code is used, and are often
surprised to find it is used more widely, by more people,
and in different ways, than they realized [7].

In software ecosystems, developers typically write software
that they themselves need, or that the companies that em-
ploy them need [21]. Participants are often willing to do
extra work to turn the software they wrote for themselves
into a resource the community can use [33], but are reluc-
tant to do so unless the community needs are clear and de-
monstrable. They have rather limited information about the
requirements of the larger community, however, typically
in the form of bug reports, feature requests, comments on
mailing lists or social media [12], and perhaps work others
are doing to modify forked copies of their code [21]. Gen-
erally a very small proportion of potential users contribute
information in these channels, and surges of attention often
represent an insider controversy rather than a reflection of
widespread need [34].

Communities of scientists who share software provide par-
ticularly compelling examples of this information gap (e.g.
[24,33]). Understanding and assuring compatibility and
interoperability across these ecosystems presents a substan-
tial information and coordination challenge (e.g., [7,9,38]).
Science increasingly depends on software for analysis,
modeling, visualization, and storing and manipulating data.
Yet resources for developing software are generally very
scarce, so making good decisions about effort allocation is
particularly critical. Therefore, we selected a set of related
scientific software communities in order to address the
question: what can computer support systems offer to play

Paste the appropriate copyright/license statement here. ACM now supports
three different publication options:
• ACM copyright: ACM holds the copyright on the work. This is the

historical approach.
• License: The author(s) retain copyright, but ACM receives an exclu-

sive publication license.
• Open Access: The author(s) wish to pay for the work to be open ac-

cess. The additional fee must be paid to ACM.
This text field is large enough to hold the appropriate release statement
assuming it is single-spaced in Times New Roman 8-point font. Please do
not change or modify the size of this text box.
Each submission will be assigned a DOI string to be included here.

 2

the informational role that prices play in markets, to help
align effort allocation with needs in software ecosystems?

We developed visualization tools – the Scientific Software
Network Map (“the Map”) to allow scientists developing
software to answer key questions about how much their
software was used, and what other software it was used
with. The Map is designed to provide meaningful signals
about whether maintaining and enhancing specific packages
is worth the effort, and about potential interoperability is-
sues with other packages it is commonly used with.

We evaluated the tool’s potential usefulness by first asking
scientist-developers who write programs in the R statistical
language to reflect on their current information-seeking
practices. We then provided an instance of the tool using
data from the R ecosystem, and allowed them to interact
with it to answer any questions they might have. We asked
them to evaluate the tool with respect to their own needs.
Their responses allowed us to evaluate the capabilities of
the tool, as well as our underlying assumption that the sci-
entists are trying to maximize use of their software and
minimize their development effort.

Our interviews showed that scientists’ behaviors differed in
some ways from what our simple market and price meta-
phor would suggest. The preference revealed by their be-
haviors was not for putting a greater quantity of better-
integrated packages in more hands for the least develop-
ment effort, but instead for providing for a greater quantity
of distinct use cases, with the least coordination effort.
Consistent with the preference for more use cases, they are
primarily motivated to program for their own needs, or
those of other researchers that are distinctive enough to
possibly yield new collaborations or citations. Their ap-
proach is mostly reactive: scientists respond to their own
needs or the needs of colleagues that draw their attention,
but they are mostly not motivated to proactively research
the “market” of potential users of scientific software to pro-
vide the greatest good for the greatest number. Our evalua-
tion suggested tool modifications to fit the needs of this
ecosystem, i.e., a data collection and visualization tool
should highlight variety of uses to incentivize development,
and give more focused help with inter-project dependencies
to lower the cost of coordination.

RELATED WORK

Software Ecosystems
Lungu et al. [25] define a software ecosystem as: “a collec-
tion of software projects which are developed and evolve
together in the same environment. The environment is usu-
ally a large company, an open-source community, or a re-
search group”. Other definitions (e.g. [27]) add the relation-
ships among the developers of those projects as part of the
core definition, but both perspectives convey the idea of
distributed actors collaborating with each other to build and
maintain software projects that rely and depend on each
other.

A few studies exist that examine software assemblages and
the human infrastructures supporting them as ecosystems
[15,16,25,28,35]. These studies stress that software devel-
opment is making an important shift from standalone appli-
cations to ecosystems, where components within an ecosys-
tem work together as a platform for further construction.

In a scientific software ecosystem, many scientists, who are
primarily engaged in their scientific work, are also creating
and maintaining software. Communities of scientists are
migrating to such ecosystems, adopting a variety of names,
including cyberinfrastructure, grid computing, collaborato-
ries, and eScience [2,23].

Lee, Bietz, and Ribes [23] describe how, in cyberinfrastruc-
ture, requirements tend to evolve rapidly in response to new
technologies and scientists’ diverse needs [23]. Bietz and
Lee [3] explored the tradeoffs in the way these systems are
adapted with work-arounds, from-scratch development, and
extending existing cyberinfrastructures.

Because the incentives for software sustainability in science
can be missing or indirect [15,16], scientific software in
some fields is characterized by redundant implementations
of large monolithic codebases [5, 16], poor support, and
infrequent maintenance. These effects come about for sev-
eral reasons, including heterogeneous needs and timing of
different research projects [17], the tension between long
and short term needs [30], and reluctance to be dependent
on outside parties [6].

Incentives, Visualization, and Impact
Scientists are rewarded for scientific impact, measured (im-
perfectly) by things like publication counts and citation of
papers. Software plays a large and expanding role in ena-
bling science, but it is cited haphazardly in scientific writ-
ing [13,19]. For this reason, the scientific impact of the
work of developing and maintaining a piece of software is
often invisible to the community [16]. If the use of a soft-
ware package were made visible along with its impact in
the form of publications it enabled, scientists could hope to
receive credit for the scientific impact of their software
work. Recognition could provide a powerful incentive to
do the extra work to make software useful to a broader
community, just as recognition has done in online commu-
nities [20].

Besides this extrinsic motivation, it has also been observed
[33] that knowing what other scientists need is intrinsically
motivating to them: they share their software precisely be-
cause they perceive that others need it. Usage data about
scientific software has the potential to demonstrate to an
author that they do have users who need their software, and
this should motivate them to continue supporting and en-
hancing the functionalities that are most used. Knowing
how and how much a package is used is very helpful in
deciding what work is most worthwhile.

In this paper we evaluate a tool aimed at two primary types
of users [14] within scientific software ecosystems: the

 3

software producer who writes software that could potential-
ly be used by others, and an ecosystem steward, who is an-
yone concerned with the health and unity of the set of pack-
ages as a whole, and how well they meet the needs of a
scientific community.

SCISOFT NETWORK MAP TOOL DESIGN
The Map is designed to be populated from different ecosys-
tems’ software repositories. The interface uses d3 for the
visualizations, and pyramid, mongo and jinja for the web
and database framework. Maps are designed to directly
address the needs of scientific software producers and
stewards for usage-related information about packages. The
tool’s features include a usage graph over time, a filtera-
ble/sortable list of packages, a “co-usage” graph showing
what packages were used together, and a listing of external
software (e.g. end-user scripts and packages under devel-
opment) that depend on each package.

The Map frames software contribution in terms of the posi-
tive impact it was having on others; we intended it to moti-
vate scientists to further this end; and in practice provide
numbers and graphs that scientists could show to tenure
committees or granting agencies in order to justify their
work; it can also inform them of usage patterns to help di-
rect and prioritize development. Visualizations in the tool
include:

PACKAGELIST: The main directory of packages emphasizes
packages’ importance by usage or impact, by ordering
packages by user-selectable measures of impact, and filter-
ing them by ecosystem. The measures include counts of
uses, “recent” uses, distinct users, publication counts, and
usage counts among users’ publically shared projects. Sci-
entific publication counts come from Scopus [31]. Besides
simply serving as a directory and entry point to the tool, this
listing is designed to draw scientists’ attention to the most-
used options in a fragmented field, centralizing attention
and resources to provide better economies of scale and
promote standardization. (via, e.g. rational herding [8]). The
idea is to help align the incentives in the ecosystem, en-
couraging technical work on software that is actually used.

CITELINKS: Links to the actual papers are available via
Scopus. The intention is that producers could refer to these
in a CV to show the impact of their work, or they could use
it to channel their efforts into their most-cited packages.
Stewards could use it to show the overall benefit of the eco-
system to grantors. It could also help producers see which
of their colleagues are citing different packages, and read
the papers to see how they are being used.

USEHISTORY (Figure 1(b)): The Map can also depict usage
history over time for a user-selected set of packages, show-
ing how many users were using different versions of the
software at each point in time. This visualization is de-
signed to help producers track trends in their package’s use,
and thus demonstrate to others that their ecosystem contri-
butions are being used; it can help stewards maintaining

sets of shared packages spot trends such as emerging use of
new packages or shifting adoption of new versions. It could
also help them make decisions about allocating resources
and making packages available.

USERPROJECTS: The tool lists projects that rely on each
package. We designed this facility to allow producers to
see how their package is being used by end users, not just
by the other packages in the ecosystem, and drill down to
the level of specific lines of source code that call their
package’s API, on the theory that being aware of specific
end-user usage patterns might prompt producers to put
more time into developing the more popular packages or
parts of their packages. It could also allow end users to find
concrete examples of how other users may have used these
packages.

COUSAGE: This feature (Figure 1(a)) depicts which packag-
es were most commonly used together, on the theory that
software integration/compatibility work should be consid-
ered as a valuable scientific contribution: if scientific end
users often find themselves trying to integrate the functions
of two packages, then producers of those packages could
potentially assist in the work of those end user scientists by

(a) COUSAGE

(b) USEHISTORY

Figure 1. Two features of the Map: (a) co-usage visualization
of software artifacts (nodes), frequency of use (node size), fre-
quency of use together (edge width), type of dependency (dot-
ted = logical; solid = formal), and relevance to the focal pack-
age of the diagram. (orange = only used with apex; blue = also
used when apex not used). The bar graph at right shows the

data in another form: bars show how many projects using the
focal package also used some other package. (b) Number of

runs of each version of a package over time.

 4

making their packages work together more easily, adding
things like data structure conversions, documentation rele-
vant to those circumstances, or code that adheres to stand-
ards typical of that environment. Stewards can also see
which of their packages merit better interoperability efforts,
and end users can get ideas for useful software combina-
tions from their colleagues.

This view depicts the neighborhood of a single package in
the graph, and allows navigation to neighboring packages in
the graph. It shows static dependencies (packages that re-
quire others as prerequisites), and logical dependencies
(packages that users chose to use together to solve some
problem). To keep the graph readable, links with low
pointwise mutual information are pruned: so that, for ex-
ample, a package G that is very popular, and whose use is
uncorrelated with the use of package P, is unlikely to be
shown in the COUSAGE graph’s for package P.

Data presented by the Map
R is a computer language specialized for statistical compu-
ting. A user starts it up from the command line or by run-
ning a graphical environment like RStudio [1]. From there,
they can run scripts that they or others have written, or type
commands directly at a prompt. The scripts or commands
may in part rely on functionality provided by packages. R
has a rich ecosystem of many thousands of specialist plugin
packages for advanced statistical techniques, machine
learning, and domain-specific areas from bioinformatics to
fishery science. Packages are units of software functionality
that are typically written by scientists who need them for
their own work, freely shared through websites like
cran.org and bioconductor.org, and are easy for users to
install. There are sub-ecosystems of packages, nested with-
in the larger R ecosystem, that manage their own interde-
pendent collections of related packages.

We created an instance of the Map with data from three
open software repositories containing R software (CRAN,
Bioconductor, and Github, using the mirror GHTorrent
[11]). We are collecting data on an ongoing basis of the
package usage of over 100,000 R-language end-user scripts
and other projects shared on Github, a platform for sharing
source code of open-source software. Map downloads the
code for new or changed projects once a day, and examines
which packages they were using.

Some programmers use Github to store their source code
even for small projects whose adoption they may not be
actively trying to promote, because of its convenience and a
principled desire to work openly. It thus captures a range of
uses that overlap with scientific usage. As we shall see be-
low, stewards had different takes on the appropriateness of
Github data depending on their ecosystem.

To link academic citations with packages, we read a
metadata field that many R packages provide that suggests
a canonical citation for users to refer to. We look up citation

counts to these papers in Scopus [31] on a rotating basis,
approximately every two weeks.

STUDY
The Map is available as an online web application
(http://omitted.for.anonymity), with more than 2000 users
(as measured by Google Analytics) since its introduction
earlier in 2015. It has been instantiated for two ecosystems:
the R statistical language, and the ecosystem of supercom-
puter applications available at the Texas Advanced Compu-
ting Center (TACC).

In this study we evaluate the Map in the context of the R
ecosystem, asking producers and stewards in sub-
ecosystems of R about their current practices, and evaluat-
ing in a walkthrough how the tool could help them. We
address the following research questions:

RQ1 Did usage and impact information help to motivate
scientists to do the work of scientific software construction
and integration, and help them justify this work to the deci-
sion-makers they answer to?

RQ2 Did software producers and stewards consult usage
information to weigh cost/benefit decisions about what
software work to do and how to prioritize it?

RQ3 Did information presented in the tool fit interviewees’
mental models of their ecosystems? What do any differ-
ences imply about how usage data should be collected and
presented?

METHOD
We sought out interviews with people involved in R eco-
systems who were directly responsible for adding, remov-
ing, and maintaining software. We operationally defined
“ecosystem” as a set of packages for which there was evi-
dence of a common purpose, and of an organization or
community, with a website, advocating for adoption or in-
teroperation of the packages.

In these ecosystems, we interviewed package producers
(identified as people listed as the maintenance contact for a

Impact
What do you do to estimate usage and impact?
What do you do with that information?

Users and their needs
How do you find out and prioritize what needs work?

Coherence/Co-usage
What work do you do towards interoperability of packages?
Do you reject or prune packages based on duplicate functionali-
ty? (Stewards only)
How do you find out what interoperability issues need work?

Evaluation
How would you use the information presented in the tool?
Does it seem correct?
What is missing that would make it more useful?

Figure 2. Semi-structured interview topics for package pro-
ducers and ecosystem stewards

 5

published R package) and ecosystem stewards (identified as
individuals listed as contacts on the ecosystem’s web page).
In the organizations we considered, ecosystem stewards
were also producers since they were writing code, both for
their own scientific reasons, but also in promotion of stand-
ard data structures or interfaces within the ecosystem. We
did not attempt to interview users or people with other roles
in the ecosystems, since they contribute to the software only
indirectly.

We interviewed 12 people, listed in Table 1. The interview
was designed to evaluate the software by a contextualized
walkthrough: we first asked them about their current prac-
tices, then walked them through the screens of the tool,
showing them displays of their own packages’ usage, im-
pact, and relationship with the ecosystem, and asked them if
it could replace or augment their practices. We followed a
semi-structured interview format, with questions (Figure 2)
derived from the list of information needs for collaborators
in software ecosystems as described in the related work
section and in Howison’s enumeration of information needs
[14]. Questions about the tool focused on the intersection of
issues that came up in the current practice part of the inter-
view, and ecosystem data viewed via the Map.

We wanted to interview producers whom we thought were
likely to have encountered different kinds of issues where
information about use is important. We selected five inter-
viewees from attendees of the NEScent Population Genetics
hackathon [22], which was in part aimed at improving in-
teroperability among R packages for phylogenetics and
related fields, since understanding use is key to interopera-
bility. We also interviewed two producers of different gen-
eral-purpose packages, with large and varied user commu-
nities who could be using the packages for highly varied
purposes.

We also interviewed five ecosystem stewards, individuals
listed as having central roles on the websites of four other R

ecosystems of varied sizes and domains: Bioconductor (a
very large set of biology-related packages, with 1023 soft-
ware packages, plus 1122 data packages); FLR (for evalua-
tion of fishery modeling and management strategies with 9
packages), rOpenSci (which facilitates open data and repro-
ducible research with 87 packages), and rOpenGov (which
facilitates access to government data sources with 32 pack-
ages).

RESULTS
This section is organized around the three research ques-
tions: (RQ1) motivating and justifying ecosystem develop-
ment work in general, (RQ2) determining and prioritizing
what particular work to do, and (RQ3) tool differences from
users’ mental models.

Justifying and Motivating Development
Producers’ practices Producers needed data to justify their
work to decision-makers, but the specifics varied. They did
not mention sources of data that were motivating to them,
but instead described abstract motivations such as reciproci-
ty, scientific accuracy, and helping other users.

Producers were varied and unsystematic in what infor-
mation they attended to and used to justify their work on
software. Some of them said they needed to provide evi-
dence that their work had impact, but the evidence they
currently rely on varied, and none of them expressed doubt
that they would be able to satisfy this need with their cur-
rent practices.

Some producers mentioned tracking citations to their soft-
ware or to a related paper they asked users to cite:

At some point, within this next release, I'm hoping to
have some sort of publication announcement, a vignette or
something, that I can point to as a citable reference. And
that will be a bit of a justification as well. [P-Gen-1]

So, this is part of my thesis, and I do have to justify it,
but it is published [as a methods paper], and methods pa-
pers are always highly cited. So I can justify it by saying,
"This will always be my highest cited paper," because it's
already gotten 14 citations within the past year, and it's
only been out for a year. [P-Gen-4]

One package author said that other packages came to rely
on his package (a relationship which is easy to see in
CRAN), and this had helped get him his current job:

I think the post doc here I got more or less because I
have this package out. [It] has ten packages which depend
on it. So, that’s kind of a sign that it’s important. [P-Gen-3]

Producers, in short, relied on whatever information about
impact was available and salient to justify their work but
were not particularly eager to find better sources of infor-
mation.

Producers’ impact on others’ scientific efforts was also per-
sonally motivating for them. Their reasons were abstract,
focusing on helpfulness, correctness and reciprocity, rather

Ecosystem Purpose Interviewees
Bioconductor

www.bioconductor.org
Bioinformatics 2 Stewards

(S-Bio-1,2)
FLR

www.flr-project.org
Fishery man-

agement
1 Steward
(S-FLR-1)

rOpenSci
ropensci.org

Open data,
reproducible

science

1 Steward
(S-Sci-1)

rOpenGov
ropengov.github.io

Government
data

1 Steward
(S-Gov-1)

(no name)
github.com/NESCent/r-

popgen-hackathon

Population
Genetics

5 Producers
(P-Gen-

1,2,3,4,5)
CRAN

cran.r-project.org
General pur-

pose
2 Producers
(P-Cran-1,2)

Table 1. The twelve interviewees. Participants’ codes represent
their role and ecosystem affiliation

 6

than mentioning particular metrics as they did when dis-
cussing justifications.

One described the reciprocity of sharing as motivating re-
gardless of whether it was actually helpful:

To be honest, I do not really think about whether it is
helpful or not. It is certainly helpful to the work I am doing,
and I was happy to share this […] in the same spirit as oth-
ers share their work/packages in the R community. [P-
Cran-2]

Another spoke vaguely of what “might be helpful”, but did
not elaborate on ways of verifying that the code was really
helpful:

I thought, "Hmm, well, then, perhaps others might find
this helpful too, and it's yet another thing which will be out
there," and I made it available. [P-Cran-1]

A third was more specific about what might be helpful:
improving others’ results:

They’re using methods that are giving them the wrong
answer. We think that our method will give them better an-
swers will give more correct answers. So, we want the an-
swers that people publish to be right. [P-Gen-2]

Producers’ evaluation The USEHISTORY, PACKAGELIST,
and CITELINKS features of were designed to help demon-
strate the scientific impact of software, and producers’ reac-
tions to it suggests that they perceived the kinds of data
provided as useful, with some caveats about the details of
our implementation. In the Map walkthrough, we started off
most interviewees by showing them the PACKAGELIST, fil-
tered to their ecosystem and sorted by one proxy for “us-
age”: the number of Github projects which referred to the
package.

Interviewees were accustomed to using citation counts to
justify their work, and liked the convenience of having
them listed for each package. However they were almost
universally critical of our choice to use Scopus counts in
contrast to Google Scholar. Google scholar seems to be an
approximation that interviewees preferred: it casts a wider
net and errs on the side of false positives rather than false
negatives. We know this because the critiques were quite
pointed: when Scopus was unable to recognize a citation in
order to count references to it, authors expressed concern
about their software getting short shrift:

It's a bit strange...I know of many papers which cite my
package (the software documentation) so it should really
count them (but Scopus seems not to). [P-Cran-2]

Unfortunately, Google Scholar’s terms of service prohibit
automated search for citations.

As for motivation, one producer stated a direct motivation
from evidence of surprisingly broad co-usage to do im-
provement work on his package:

I'm really getting nervous when I see that so many
people use that package. [Laughter] That should really
motivate me to revisit the code and actually make it numer-
ically more stable [P-Cran-1]

Producers commented on the convenience of several fea-
tures that were consistent with their abstract motivations:
high usage of a package could suggest to an author that it
has been helpful or that the act of reciprocity has been ac-
cepted by a community; and the ability to find and examine
uses of one’s package could help reassure an author that
people are improving their work by correctly employing a
package’s features.

Stewards’ Practices Ecosystem stewards drew from more
varied information sources about impact than producers did,
and put more effort into synthesizing the information into
coherent reports for granting agencies and other decision-
makers.

S-FLR-1, for example, said their organization tries to esti-
mate counts of individual and organizational users. They
count organizations that published “grey literature” that
mentioned FLR software, they count attendees and their
sponsoring organizations at workshops, and tally personal
contacts to produce numerical estimates of numbers of at-
tendees.

Other stewards did not try to produce unified estimates of
number of users, but instead drew on many sources to pro-
duce reports and proposals to granting agencies; making
graphs, charts and tables summarizing data that was evi-
dence of widespread usage, interest, and scientific impact of
ecosystem packages. Measurements they mentioned in-
cluded number of attendees at workshops and training clas-
ses they had sponsored, numbers of citations for popular
packages in Google Scholar; number of results returned
from keyword searches in academic and grey literature;
volume of activity in discussion boards, mailing lists, and
twitter mentions; number of emails and personal contacts at
conferences; package download counts, and website visits.
In the Discussion section we suggest how the Map might be
extended to help with some of this data gathering.

Stewards Evaluation Stewards generally liked the idea of
having this kind of information collected together in one
place:

This is the kind of thing we need to think about to be
fairly honest. [S-Flr-1]

I think it’s important to know how [the packages] are
used. Especially when we are developing and maintaining
multiple packages, it’s really good to have this kind of
overview. And if you have 10 or 20 or more packages, what
of them are the most dominantly used? And I’m sure it can
easily happen when some packages don’t really find users
and some might become very popular. And I think it’s quite
useful to be able to distinguish them according to the usage.
[S-Gov-1]

 7

We did not show USEHISTORY to all the users, but one
steward showed interest in the data, commenting that they
had not pursued similar data that was already available to
them, but would have taken some work to extract:

We can recover the download stats [but] I don’t think
we have ever really looked at it. It would be interesting to
know for us [S-Bio-1]

Choosing development needs and setting standards

Community needs
Producers’ practices We asked producers how they knew
what features to add to their packages, and the practices
they described were mostly reactive: that is, they worked on
new use cases that came to their attention rather than proac-
tively seeking out user needs for new or improved features.
New use cases came primarily from their own research
needs, but also from user requests that struck them as easy,
interesting, or fruitful, and from incompatibilities that they
scrambled to fix when other neighboring packages were
updated.

Use cases mostly came from our own research re-
quirements. [S-Bio-2]

I developed for myself because it didn't exist, and I fig-
ured it was a general enough issue that other people could
use it. [P-Gen-1]

Interviewees agreed that priorities for the ecosystem as a
whole was a broad diversity of uses, driven by the individu-
al package authors meeting their own research needs:

It’s very weakly defined by a central vision, and much
more so defined by the agendas of the individual contribu-
tors. [S-Bio-2]

But besides providing for their own research needs, produc-
ers did describe ways that the needs of others fit into their
practices, mostly in response to direct, usually time-
sensitive requests from other ecosystem actors or automated
tools.

The CRAN repository has semi-automated mechanisms for
alerting package authors when a change in a neighboring
package, or R itself, causes an incompatibility. One produc-
er told us this was almost the only time he updated his 20-
year old package now:

R itself changes so that packages don't work anymore:
there are these quality-control tests that the R maintainers
have imposed, and then you are forced to do some changes.
[P-Cran-1]

CRAN’s policies require some trust between producers.
Their policy is to “archive” any package that does not re-
spond quickly enough to an email from the CRAN team
saying that it has failed a test [26]; so if a producer chooses
to rely on another package, and that other package’s main-
tainer falls behind on maintenance, the producer’s own
package may fail to install for new users.

Producers also described receiving emails or other contacts
from users with problems or feature requests, or saw ques-
tions come in specialist discussion forums.

I have created a Google group, a forum for people to
ask questions about [package] [P-Gen-4]

I would say that the bug reports are the most common
type of contact. [S-Gov-1]

Producers were motivated by personal contact with some-
one with a problem or idea, rather than on any systematic
attempt to estimate the number of (potentially silent) users
with different kinds of needs. One package author strongly
emphasized this interest in particular issues rather than
global information about the user base:

"Users needs" is a tricky thing in open source R pack-
ages...It is not something I will anticipate (I am not a com-
mercial software vendor), nor do I care to. However, if a
request is made which seems reasonable and not too time
consuming, then I will usually oblige. [P-Cran-2]

Most interviewees did not elaborate on which use cases
they cared about in particular, although there were sugges-
tions that they considered dealing with others’ needs to be a
cost, to be weighed against a benefit:

When you develop something like a package, it be-
comes almost a burden. Because suddenly, you have all
these people who need your help with their specific little
problem. And you wanna be able to help them because that
means that your paper gets cited. [P-Gen-2]

From time to time, I get requests of, "Can this be done?
Can that be done?" And if I am not able to do the changes
easily, then it goes pretty far down on the list of things. If it
is something that actually could produce a paper or some
collaboration, it would be more motivating to do this
change [P-Cran-1]

It could be that producers’ apparent interest in addressing
particular new use cases, rather than proactively counting
kinds of users, is because a single, distinctive use case is
more likely to be scientifically interesting, both to the pro-
ducer as a collaborator, and to the rest of the community,
resulting in a citation. In contrast, student educational use,
as well as further examples of “typical” uses, may be less
interesting and less likely to lead to new science and new
citations.

But fixing other people’s problems was also a moral obliga-
tion for some:

I do feel like, for me, it’s a moral responsibility. I don’t
want there to be any mistakes in the code and if somebody’s
having trouble with a dataset, maybe there’s a mistake and
I need to find it. [P-Gen-2]

Producers’ evaluation Producers’ reactions to the tool and
their current practices suggest that software usage statistics
would be most useful to them in understanding the needs of

 8

other users, if we provided them in a more granular form.
When examining the tool as it exists, they imagined that
they would use it to answer very specific questions about
usage driven by tasks initiated for other reasons, for exam-
ple to check how commonly people are using some method
whose interface they wish to change.

One producer imagined how he could use USERPROJECTS to
get more specific information about how his packages were
being used:

You could kind of get an idea of what they are using
the package for. Many citations I get are more or less for a
few functions, which seem to be comfortable to do in [my
package] in comparison to another program. So, [you
could] look up what they are using it for, maybe adjusting
some model comparison or a very specific function. [P-
Gen-3]

Two producers mentioned wanting to be able to query
USERPROJECTS for a particular abstract functionality, and
see all the packages where that function was performed.

I mean would it be absurd to actually work out which
functions are used and which packages they belong to? [P-
Gen-5]

Standards and duplication of effort
Producers’ practices Several producers described doing
careful research into the ecosystem’s package offerings at
the start of a new project, when deciding whether to add
functionality to the ecosystem or relying on existing func-
tionality. Interviewees searched, sometimes extensively, for
related software to build on, rather than starting from the
assumption that they would build everything from scratch.

Although they did search to see if functionality was already
available before writing their own code, producers weren’t
averse to duplication of functionality if it made things more
convenient. One author sought out implementations of two
algorithms, Hierarchical F-statistic and AMOVA (Analysis
of MOlecular VAriance), among phylogenetics packages.
He found them in different packages, but realized it would
be better for users if he re-implemented both:

That's much easier for a user. … They run one func-
tion, and they get one data frame result. If they have multi-
ple packages then they have to combine them, then, say, the
names of populations get changed, or the formatting is
changed... It just becomes more work. [P-Gen-1]

Coincidentally, a very similar situation came up for another
producer involving the same statistic; in this case, the pro-
ducer showed a preference for development effort over co-
ordination effort:

I was using Hierfstat to estimate FST but I had to rear-
range my data in a way that Hierfstat would take it. And so,
I ended up just writing my own code estimating FST so that
I didn’t have to rearrange my data and I didn’t have to send
[Hierfstat] this other patch. [P-Gen-2]

Stewards’ practices Keeping packages working together
requires the work of software producers, but stewards set
the ecosystem rules that determine what is expected of pro-
ducers, how it will be enforced or encouraged, and how
much work will be involved. In the case of CRAN, there is
considerable cost to a producer of meeting the basic re-
quirements of submitting a package. There is an R package
called devtools [37] with the sole purpose of building and
testing a submission of R code to evaluate it with respect to
CRAN’s requirements for compatibility with R itself and
with neighboring packages; the instructions for using this
package describe the process as “frustrating, but worth-
while”, because “CRAN provides discoverability, ease of
installation and a stamp of authenticity.” [36]

This burden can be a disincentive to producers, as men-
tioned above.

I should actually have some incentive of getting all my
packages updated and better […] but then it's a question of
how to do it so that it don't break the code that other people
wrote to use it. [P-Cran-1]

All of the ecosystems inherited the basic technical coher-
ence of the R platform, but stewards also echoed what pro-
ducers told us about the importance of an ecosystem having
shared standards, especially common classes:

What we’d like to see is people reusing the fundamen-
tal objects and attitudes that we’ve sort of founded the pro-
ject on. But there isn’t a lot of enforcement there. There’s a
lot of recommendation. [S-Bio-2]

Some stewards, like the core team of Bioconductor, actively
nudge new contributors towards reuse of standard classes.
rOpenGov and FLR both grew out of single packages, and
so also have standard classes they can ask contributors to
reuse. rOpenSci focuses on building community around
common goals and themes, but S-Sci-1 also reported work-
ing towards cohesion:

A number of our packages for interacting with Web
services for scholarly articles: … each of those has a slight-
ly different programmatic interface. And so I’ve been work-
ing on a client that will integrate across all of those and so
the user only has to learn one thing [S-Sci-1]

Stewards thus face a tension between creating strict in-
teroperation standards, thereby risking too much extra work
for producers, on one hand, versus the risk of allowing in-
compatibilities to leak through to users of the ecosystem, on
the other hand.

Producers addressing their own needs led to some duplica-
tion of functionality, and ecosystem stewards did not worry
much about such duplication either:

You can contribute a package; it goes through a cer-
tain amount of quality control. There isn’t a lot of attention
to semantic overlaps between functionalities. I’m sure
there’s some. [S-Bio-2]

 9

On the other hand there is a recognition of the value of re-
ducing duplication by adopting standards: one steward de-
scribed how the core group nudged their ecosystem to settle
on one of two competing classes:

It is possible that the group that has made the compet-
ing tool chain are still using that. You don’t require them to
use the [standard] one, but we have a lot more documenta-
tion and demonstration. And our fundamental location re-
sources use the one that came out of the core, so that’s sort
of what drives the energy toward that particular solution.
[S-Bio-2]

Producers’ and stewards’ evaluation Producers saw some
features of the Map as being useful for exploration of relat-
ed packages when considering adding new functionality;
this seems to be a key point where duplication can creep in
if search is too difficult:

There are packages there that I've never heard of. And
it might show me that there's something else that I could
use. [P-Gen-5]

One producer imagined that he could look through
USERPROJECTS to see how other projects were accomplish-
ing a task, to see whether he should reuse some existing
function, or implement something new:

So should I have a wrapper in [my package] for some-
thing, say, that's in [a common package]? Or do I even
need to have that function in [my package]? Can I just drop
it because it's fully handled in [the common package]? [P-
Gen-1]

Stewards’ ideas about how to use the Map suggested that it
could help with their goal of nudging producers towards use
of standard packages. In particular some stewards saw
COUSAGE as useful for guiding documentation and user
training development.

One steward told us he thought examples of how to use
packages could be drawn from what COUSAGE reveals
about the variety of contexts in which the package was
used. In our interview, we showed him a package in his
ecosystem, and he was surprised to see it often used with a
set of packages he’d never heard of:

If we knew people were using those, we could do tuto-
rials with those, kind of demonstrate: this is how you do
some sort of analysis to make a plot or whatever it is that
people do with that [S-Sci-1]

S-Gov-1 also saw COUSAGE as a way of gathering common
use cases for training or improved documentation:

We can also use that to think how to communicate the
different projects. And maybe the documentation is more
important for the more common projects. [S-Gov-1]

How data matched interviewees’ expectations
Interviewees questioned two aspects of the portrayal of
their ecosystems: which “used-with” relationships were

most important, and whether largely-duplicated projects
were properly considered as “usage”.

COUSAGE Generally, interviewees found the COUSAGE
visualization informative once they understood it, but con-
fusing at first. We struggled to find the right way to prune
this visualization to a reasonably “important” neighborhood
of a package, and in some cases the results were not intui-
tive. In particular, we used a pointwise mutual information
measure to prioritize relationships, but among Bioconductor
packages, this resulted in some visualizations showing very
low-frequency neighbors:

It’s pretty clear that you’re working with people that
have very specific focuses… I don’t know that much about
it, but this package is definitely not going to be one of the
dominant users of BiocGenerics. [S-Bio-2]

S-Bio-1 suggested that the graph should be viewer-
dependent, emphasizing connections to very domain-
specific packages useful for scripting when displaying the
graph to an end user, and favoring internal utility packages
when displaying to producers of packages.

Some were surprised not to see things they expected:

Yeah, it makes sense. I’m somewhat surprised we don’t
see the other rOpenGov packages. Because I think they are
probably used with Sorvi also. At least I have been using
them with Sorvi. [S-Gov-1]

A general limitation of the data set we used which was most
apparent in this visualization was that for rarely used pack-
ages (or, rarely used in Github scripts), the relationships
were drawn from a very small sample of uses. A small eco-
system steward phrased this positively:

The more commonly the package is used, the more use-
ful this is. And I think it’s also good to start to collect this
early on. [S-Gov-1]

Inclusion of usage data Interviewees were sometimes con-
cerned about automatically duplicated projects distorting
the dataset.

USERPROJECTS included “forks” (copies of projects, possi-
bly modified); this caused some interviewees to ask if the
counts in PACKAGELIST also counted forks (they did); they
felt these should not be included. We had expected that a
highly-forked project would be welcome evidence of more
usage, but interviewees seemed to consider forks irrelevant
noise.

Another interviewee drew our attention to a distinction be-
tween scientific use and educational use. In our examina-
tion of the data, school assignments in Github were often
quite repetitive, with many students’ work showing up as
having similar filenames and imports. One steward worried
that school assignments were being counted. These rarely
showed up in our walkthroughs with interviewees, howev-
er, since the most highly forked Github R school assign-
ments we examined happened to almost never use any R

 10

packages. However this could be a concern in the future if
other sources of usage data tap into data from course as-
signments that do encourage students to use packages.

One producer raised the question of the time span over
which usage data was aggregated: P-Cran-1 at first doubted
the accuracy of PACKAGELIST because a new, highly effi-
cient package appeared so far down the list. This suggests
that an option to show a more recent “window” of usage
could better depict the ecosystem’s current status.

Some stewards also suggested that different data sources
are appropriate for different communities. S-Flr-1 thought
Github was an appropriate source because they encourage
their users to use Github; but S-Sci-1 thought Github users
might be atypical of rOpenSci users.

DISCUSSION

Tradeoff of development effort and coordination costs
Producers repeatedly described adding whole packages, and
incremental functionalities, simply because it was incon-
venient to reuse existing functionalities. Rather than trying
to build consensus with authors of existing packages, they
preferred to duplicate effort.

The tolerance for duplication is less surprising when con-
sidered in terms of the way scientists in this ecosystem
think of costs and benefits. The benefit that they are trying
to maximize is scientific impact, and it is often distinctive
use, not repetitive use, that is more likely to contribute to
novel, innovative results. So perhaps it is not surprising that
scientists lean towards reimplementation of a function to
get exactly the functionality they want, as opposed to mak-
ing do with existing offerings.

As for the costs, our evidence indicates that the costs of
coordinating with others often outweigh costs of developing
lines of code. Prior research suggests that two factors in R
ecosystems make coordination particularly expensive: First,
many R producers are scientists, and Ribes et al. [30] point
out that coordination among scientists can be difficult be-
cause of misalignment of their time schedules for research.
Secondly, CRAN asks authors to test all dependencies with
the latest versions of other packages when submitting up-
dates to the repository [26] with every update. A failed test
risks having their package dropped from the repository.
This makes unresponsive collaborators a risk, compared
with an ecosystem like Node.js in which packages can safe-
ly refer to previous, known versions of other packages, and
update on their own schedule [4].

IMPLICATIONS FOR DESIGN
Overviews of relationships between packages are useful for
stewards, and for deliberate efforts like hackathons; but for
common development tasks, producers need (1) concrete,
granular information to reduce coordination cost: for exam-
ple exactly which functions are being used by which other
packages and how, and (2) motivating information about
distinctive use cases and patterns, rather than only raw us-

age: for example perhaps a map whose elements are distinct
configurations (collections of packages used together, like
the persona glyphs described by Terry et al [32], clustered
to show fields of similar use cases. (3) Ways of sorting and
filtering by functionality, for example searching for meth-
ods and classes by name or words in the documentation.
This would help with the duplication of effort problem, by
making good information available at the key moment in
time when a would-be package author decides whether to
start a new package or extend an old one.

For stewards, the breadth of sources they drew on in char-
acterizing ecosystem usage suggests many possible new
data sources for extending the Map: counting and summa-
rizing references to packages in social media such as email
lists and twitter; ways of extracting textual references in
blog posts, academic papers, grey literature, etc; statistics
from visits, searches, and downloads from websites con-
trolled by the ecosystem; and ways for core ecosystem peo-
ple to mine their own email and contact software to charac-
terize the number and volume of people they interact with
about packages.

CONCLUSION
In this paper we have introduced the Scientific Software
Network Map, a tool designed to provide price-like signals
of usage to participants scientific software ecosystems, to
help them justify, motivate, and direct software work for
the benefit of users of the software. We evaluated how the
Map might help ecosystem participants, and gathered in-
formation about their current practices:

• Providing summaries of usage as a proxy for “price” in
a software ecosystem has potential to help with a varie-
ty of tasks, but the signals must be chosen carefully.
Producers’ practices appear to work to maximize diver-
sity of use cases and minimize coordination costs, so
usage statistics that count duplicate uses may be less
motivating than ones that count only distinct uses.

• Ecosystem stewards already present a variety of statis-
tics about usage to justify funding for ecosystems; the
Map could provide welcome support for collecting, ag-
gregating, and presenting these price-like signals.

• Although the R ecosystem decomposes naturally at the
level of “packages”, for whom individual maintainers
are held responsible, for the purpose of understanding
user needs, usage statistics at a finer level of detail:
particular functionalities, data structures and interfaces,
could help producers decide which parts of their pack-
age it is safe to change.

These insights should lead to better information tools for
scientific software communities, and we hope that these
better tools in turn continue to reinforce the powerful mag-
nifying effect that software has on science.

ACKNOWLEDGMENTS
This material is based in part upon work supported by (re-
dacted for review)

 11

REFERENCES
1. Anon. RStudio. Retrieved May 22, 2015 from

http://www.rstudio.com/
2. D.E. Atkins et al. 2003. Revolutionizing Science and

Engineering Through Cyberinfrastructure: Report of
the National Science Foundation Blue-Ribbon Adviso-
ry Panel on Cyberinfrastructure.

3. Matthew J. Bietz and Charlotte P. Lee. 2012. Adapting
cyberinfrastructure to new science. iConference, 183–
190. http://dx.doi.org/10.1145/2132176.2132200

4. Christopher Bogart, Christian Kästner, and James
Herbsleb. 2015 (to appear). When it breaks, it breaks:
How ecosystem developers reason about the stability of
dependencies. Workshop on Softw. Support for Collab.
Global Software Eng.

5. Ronald F. Boisvert and Ping Tak Peter Tang. 2001. The
Architecture of Scientific Software R. F. Boisvert and
P. T. P. Tang, eds. Kluwer Academic Press, Boston.

6. Jeffrey C. Carver, Richard P. Kendall, Susan E.
Squires, and Douglass E. Post. 2007. Software Devel-
opment Environments for Scientific and Engineering
Software: A Series of Case Studies. Int. Conf. Softw.
Eng., 550–559.
http://dx.doi.org/10.1109/ICSE.2007.77

7. Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim
Herbsleb. 2012. Social Coding in GitHub: Transparen-
cy and Collaboration in an Open Software Repository.
In Proc. Conf. Computer Supported Cooperative Work
(CSCW), 1277–1286.

8. Andrea Devenow and Ivo Welch. 1996. Rational herd-
ing in financial economics. Eur. Econ. Rev. 40, 603–
615.

9. Yvonne Dittrich. 2014. Software engineering beyond
the project - Sustaining software ecosystems. Inf.
Softw. Technol. 56, 11, 1436–1456.
http://dx.doi.org/10.1016/j.infsof.2014.02.012

10. Sebastian Draxler and Gunnar Stevens. 2011. Support-
ing the collaborative appropriation of an open software
ecosystem. Comput. Support. Coop. Work (CSCW) 20,
4-5, 403–448. http://dx.doi.org/10.1007/s10606-011-
9148-9

11. Georgios Gousios. 2013. The GHTorent dataset and
tool suite. IEEE Int. Work. Conf. Min. Softw. Repos,
233–236.
http://dx.doi.org/10.1109/MSR.2013.6624034

12. Nicole Haenni, Mircea Lungu, Niko Schwarz, and Os-
car Nierstrasz. 2014. A Quantitative Analysis of De-
veloper Information Needs in Software Ecosystems.
European Conference on Software Architecture Work-
shops (ECSAW).

13. James Howison and Julia Bullard. In Press: Software in
the Scientific Literature: Problems with Seeing, Find-
ing, and Using Software Mentioned in the Biology Lit-

erature. J. Assoc. Informait. Sci. Technol.
http://dx.doi.org/10.1002/asi.23538

14. James Howison, Ewa Deelman, Michael J. Mclennan,
Rafael Ferreira, and James D. Herbsleb. In press. Un-
derstanding the scientific software ecosystem and its
impact: current and future measures. Research Evalua-
tion.
http://rev.oxfordjournals.org/cgi/reprint/rvv014?ijkey=
TfzJc5bI7X5Xk0v&keytype=ref

15. James Howison and James D. Herbsleb. 2011. Scien-
tific software production: incentives and collaboration.
Proc. Conf. Comput. Support. Collab. Work, 513–522.

16. James Howison and James D. Herbsleb. 2013. Incen-
tives and integration in scientific software production.
Proc. Conf. Comput. Support. Coop. Work (CSCW),
459–470. http://dx.doi.org/10.1145/2441776.2441828

17. Steven J. Jackson, David Ribes, Ayse G. Buyuktur, and
Geoffrey C. Bowker. 2011. Collaborative Rhythm:
Temporal Dissonance and Alignment in Collaborative
Scientific Work. Proc. Conf. Comput. Support. Collab.
Work (CSCW), 245–254.

18. Slinger Jansen, Anthony Finkelstein, and Sjaak
Brinkkemper. 2009. A Sense of Community: A Re-
search Agenda for Software Ecosystems. In Int. Conf.
Software Engineering (ICSE) -- Companion Volume,
187–190.

19. Daniel S. Katz et al. 2014. Summary of the First Work-
shop on Sustainable Software for Science: Practice and
Experiences (WSSSPE1). J. Open Res. Softw. 2, 1, e6:
1–21.

20. Robert E. Kraut and Paul Resnick. 2012. Building Suc-
cessful Online Communities: Evidence-Based Social
Design. MIT Press, Cambridge, MA.

21. Karim R. Lakhani and Robert G. Wolf. 2003. Why
Hackers Do What They Do: Understanding Motivation
Effort in Free/Open Source Software Projects.

22. Hilmar Lapp. Population Genetics in R Hackathon.
Retrieved May 22, 2015 from
https://github.com/NESCent/r-popgen-hackathon

23. C. Lee, M. Bietz, and D. Ribes. 2008. Designing cyber-
infrastructure to support science. Comput. Support.
Coop. Work Conf. Workshops (CSCW).

24. Charlotte P. Lee, Paul Dourish, and Gloria Mark. 2006.
The human infrastructure of cyberinfrastructure. Com-
put. Support. Coop. Work (CSCW), 483–492.
http://dx.doi.org/10.1145/1180875.1180950

25. Mircea Lungu, Michele Lanza, Tudor Girba, and Ro-
main Robbes. 2010. The Small Project Observatory.
Sci. Comput. Program. 75, 264–275.
http://dx.doi.org/10.1016/j.scico.2009.09.004

 12

26. CRAN Repository Maintainers. CRAN Repository
Policy. Retrieved September 25, 2015 from
https://cran.r-project.org/web/packages/policies.html

27. Konstantinos Manikas and Klaus Marius Hansen.
2013. Software ecosystems-A systematic literature re-
view. J. Syst. Softw. 86, 5, 1294–1306.
http://dx.doi.org/10.1016/j.jss.2012.12.026

28. Audris Mockus, Roy T. Fielding, and James D. Herb-
sleb. 2002. Two case studies of open source software
development: Apache and Mozilla. ACM Trans. Softw.
Eng. Methodol. 11, 3, 309–346.
http://dx.doi.org/10.1145/567793.567795

29. W. Powell. 1990. Neither Market nor Hierarchy: Net-
work Forms of Organization. Res. Organ. Behav. 12,
295 – 336. http://dx.doi.org/10.1590/S1415-
65552003000200016

30. David Ribes and Thomas A. Finholt. 2009. The Long
Now of Technology Infrastructure: Articulating Ten-
sions in Development. J. Assoc. Inf. Syst. 10, 5, Article
2, 375–398.

31. Scopus. Elsevier. Retrieved May 22, 2015 from
http://www.scopus.com

32. Michael Terry, Matthew Kay, Brad Van Vugt, Brandon
Slack, and Terry Park. 2008. ingimp: Introducing In-

strumentation to an End-User Open Source Applica-
tion. Conf. Hum. Factors Comput. Syst., 607–616.

33. Erik Trainer, Chalalai Chaihirunkam, Arun Kal-
yanasundaram, and James Herbsleb. 2015. From per-
sonal tool to community resource: what’s the extra
work and who will do it? Proc. Conf. Comput. Support.
Collab. Work, 417–430.

34. Jason Tsay, Laura Dabbish, and James Herbsleb. 2014.
Influence in github. Int. Conf. Softw. Eng., 356–366.
http://dx.doi.org/10.1145/2568225.2568315

35. Patrick A. Wagstrom. 2009. Vertical Interaction in
Open Software Engineering Communities. DTIC Re-
port.

36. Hadley Wickham. 2015. R packages. O’Reilly Media.
37. Hadley Wickham and Winston Chang. 2015. devtools:

Tools to Make Developing R Packages Easier.
38. Yu Wu, Jessica Kropczynski, Patrick C. Shih, and John

M. Carroll. 2014. Exploring the ecosystem of software
developers on GitHub and other platforms. Proc. com-
panion Publ. Conf. Comput. Support. Coop. Work Soc.
Comput. (CSCW Companion), 265–268.
http://dx.doi.org/10.1145/2556420.2556483

