
SOFTWARE PROCESS IMPROVEMENT AND PRACTICE
Softw. Process Improve. Pract. 2006; 11: 123–148
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spip.259

Information Systems
Success in Free and Open
Source Software
Development: Theory and
Measures‡

Research Section

Kevin Crowston1*,†, James Howison1 and Hala Annabi2

1 Syracuse University, School of Information Studies, 348 Hinds Hall,
Syracuse, NY 13244-4100, USA
2 University of Washington, The Information School, Box 352840, Suite 370
Mary Gates Hall, Seattle, WA 98195-2840, USA

Information systems success is one of the most widely used dependent variables in information
systems (IS) research, but research on free/libre and open source software (FLOSS) often fails to
appropriately conceptualize this important concept. In this article, we reconsider what success
means within a FLOSS context. We first review existing models of IS success and success
variables used in FLOSS research and assess them for their usefulness, practicality and fit to
the FLOSS context. Then, drawing on a theoretical model of group effectiveness in the FLOSS
development process, as well as an on-line discussion with developers, we present additional
concepts that are central to an appropriate understanding of success for FLOSS.

In order to examine the practicality and validity of this conceptual scheme, the second half
of our article presents an empirical study that demonstrates operationalizations of the chosen
measures and assesses their internal validity. We use data from SourceForge to measure the
project’s effectiveness in team building, the speed of the project at responding to bug reports
and the project’s popularity. We conclude by discussing the implications of this study for our
proposed extension of IS success in the context of FLOSS development and highlight future
directions for research. Copyright © 2006 John Wiley & Sons, Ltd.

KEY WORDS: free/libre open source software; information systems success; concept development; survival analysis

∗ Correspondence to: Kevin Crowston, Syracuse University School of Information Studies, 348 Hinds Hall, Syracuse, NY 13244-4100
USA
†E-mail: crowston@syr.edu
‡Earlier versions of this article appeared as: Crowston, K., Annabi, H., & Howison, J. (2003): Defining open source software project
success, iI in Proceedings of the 24th International Conference on Information Systems (ICIS 2003), Seattle, WA; Crowston, K.,
Annabi, H., Howison, J., & Masango, C. (2004): Towards a portfolio of FLOSS project success measures, Article presented at the
Workshop on Open Source Software Engineering, 26th International Conference on Software Engineering, Edinburgh.

Copyright © 2006 John Wiley & Sons, Ltd.



Research Section K. Crowston, J. Howison and H. Annabi

1. INTRODUCTION

The long-term goal of our research is to iden-
tify processes that enable distributed software
team performance, specifically, the performance of
free/libre open source software (FLOSS) develop-
ment teams. In this article, we take a needed step in
this direction by developing measures for the suc-
cess of FLOSS projects. This step is needed because
we will not be able to improve software processes
if we cannot identify what constitutes an improve-
ment. Information systems (IS) success is one of
the most widely used dependent variables in IS
research. Not surprisingly, much attention has been
given to how best to measure it (e.g. DeLone and
McLean 1992, 2002, 2003, Seddon et al. 1999, Rai et al.
2002, Seddon 1997). However, the unique nature of
FLOSS development makes some measures more
appropriate than others and requires the addition
of hitherto unconsidered measures.

FLOSS is a broad term used to embrace software
that is developed and released under either a ‘free
software’ or an ‘open source’ license.1 Both open
source and free software are free in two senses:
‘free as in speech’, meaning that the code may be
redistributed and reused in other FLOSS projects,
and ‘free as in beer’, meaning that the software is
available for download without charge. As well,
many (though by no means all) FLOSS developers
contribute to projects as volunteers without work-
ing for a common organization or being paid. As we
will discuss, these two characteristics have impli-
cations for the applicability of certain measures of
success.

It is important to develop measures of success for
FLOSS projects for at least two reasons. First, having

1 The free software movement and the open source movement
are distinct but share important characteristics. The licenses
they use allow users to obtain and distribute the software’s
original source without charge (software is ‘free as in beer’)
and to inspect, modify and redistribute modifications to the
source code. While the open source movement views these
freedoms pragmatically (as a ‘development methodology’), the
free software movement emphasizes the meaning of ‘free as in
speech,’ which is captured by the French/Spanish ‘libre’, and
one of their methods of supporting those freedoms is ‘copyleft,’
famously embodied in the General Public License, meaning that
derivative works must be made available under the same license
terms as the original. See http://www.gnu.org/philosophy/and
http://opensource.org. While the differences and similarities
of the movements are interesting, this article focuses on
development practices in distributed work and those are largely
shared across the movements. We therefore choose the acronym
FLOSS, standing for free/libre and open source software.

such measures will be useful for FLOSS project lead-
ers in assessing their projects. In some cases, FLOSS
projects are sponsored by third parties, so measures
are useful for sponsors to understand the return on
their investment. Second, FLOSS is an increasingly
visible and copied mode of systems development.
Millions of users, including major corporations,
depend on FLOSS systems such as Linux (and,
of course, the Internet, which is heavily dependent
on FLOSS tools), but as Scacchi (2002) notes, ‘little
is known about how people in these communities
coordinate software development across different
settings, or about what software processes, work
practices, and organizational contexts are necessary
to their success’. An EU/NSF workshop on prior-
ities for FLOSS research identified the need both
for learning ‘from open source modes of organiza-
tion and production that could perhaps be applied
to other areas’ and for ‘a concerted effort on open
source in itself, for itself’ (Ghosh 2002). But to be
able to learn from teams that are working well, we
need to have a definition of ‘working well’.

1.1. Outline of Article

This search for appropriate FLOSS success mea-
sures presented in this article proceeds according
to the following outline. In the first half of the
article, we develop a richer conceptualization of
success measures for FLOSS drawing on a number
of sources. We first review the literature on IS suc-
cess to see what measures might be adopted and to
identify problems in applying others to the context
of FLOSS development. We then step back and dis-
cuss the process model underlying the existing IS
models and extend these models to fit the FLOSS
context. We do so with reference to a model of
group effectiveness derived from Hackman (1987).
We next assess the face validity of our conceptual
scheme using the opinions of FLOSS developers
elicited through SlashDot, a popular Web-based
discussion board (http://slashdot.org/). The com-
parison suggests additional measures that might be
incorporated to develop a fuller understanding of
FLOSS project success that we integrate into our
conceptual scheme of success in FLOSS develop-
ment. Finally, we examine recent research articles
on FLOSS to see what measures of success have
been used in practice, and comment on their appro-
priateness and utility. The result of this conceptual
development work is a set of possible measures

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

124



Research Section Success in FLOSS Development: Theory and Measures

of FLOSS development effectiveness and related
operationalizations.

In order to examine the practicality and validity
of this conceptual scheme, in the second half of
our article we present an empirical study that
demonstrates its operationalization and assesses the
internal validity of the measures. For this purpose,
we use data from SourceForge, the largest hub for
FLOSS development projects. Finally we conclude
by discussing the implications of this study for our
proposed extension of IS success in the context of
FLOSS development and highlight future directions
for research.

2. THEORY DEVELOPMENT: MEASURING
THE SUCCESS OF FLOSS DEVELOPMENT

In this section, we describe the process through
which we developed a conceptual model of success
measures for FLOSS development. We discuss in
turn our review of models of success in the IS
literature, extensions to existing conceptual models,
feedback from FLOSS developers and review of
measure of success applied in the empirical FLOSS
literature.

2.1. Literature Review: Conceptual Models
of Information System Success

FLOSS is a form of system development, so we
begin our hunt for success measures in the IS liter-
ature. Note though that we are not attempting an
exhaustive review of this extensive literature, but
rather are using the conceptual models presented
in the literature to identify success measures rele-
vant to FLOSS. The most commonly cited model
for IS success is that of DeLone and McLean (1992,

2002, 2003), shown in Figure 1. This model sug-
gests six interrelated measures of success: system
quality, information quality, use, user satisfaction,
individual impact and organizational impact. Sed-
don (1997) proposed a related model that includes
system quality, information quality, perceived use-
fulness, user satisfaction and IS use. Taken together,
these models suggest a number of possible measures
that could be applied to FLOSS.

2.1.1. System and Information Quality
Code quality has been studied extensively in software
engineering. This literature provides many possible
measures of the quality of software including under-
standability, completeness, conciseness, portability,
consistency, maintainability, testability, usability,
reliability, structuredness and efficiency (Boehm
et al. 1976, Gorton and Liu 2002). ISO standard 9126
defines software quality as including functionality,
reliability, usability, efficiency, maintainability and
portability, each with subdimensions. A commonly
used measure of quality is the number of defects per
thousand lines of code (Diaz and Sligo 1997, Goranson
1997) or the probability of a fault in a module (Basili
et al. 1994). To this list should be added the quality
of the system documentation. Code quality measures
would seem to be particularly practical for studies of
FLOSS, since the code is publicly available. Indeed, a
few studies have already examined this dimension.
For example, Stamelos et al. (2002) suggested that
FLOSS code is generally of good quality. Mishra
et al. (2002) offer an analytic model that suggests
factors contributing to FLOSS code quality, such as
number of developers, mix of talent level, etc. On
the other hand, not many FLOSS systems include
information (i.e. data) per se, so the dimension of
information quality seems to be less applicable.

Figure 1. DeLone and McLean’s Model of IS Success (DeLone and McLean (1992), Figure 2, p. 87) ’’Reprinted by
permission. Copyright 1992 INFORMS. DeLone and McLean ER. 1992. Information Systems Success. The quest for the
dependent variable Information Systems Research 3(1): 60–95, The institute for Operations Research and the Management
Sciences, 7240 Parkway Drive, Suite 310, Hanover, Maryland 21076, USA’’

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

125



Research Section K. Crowston, J. Howison and H. Annabi

2.1.2. User Satisfaction
User satisfaction is an often-used measure of system
success. For example, it is common to ask stakehold-
ers if they felt a project was a success (e.g. Guinan
et al. 1998). There is some data available regarding
user satisfaction with FLOSS projects. For exam-
ple, Freshmeat, a Web-based system that tracks
releases of FLOSS (http://freshmeat.net/), collects
user ratings of projects. Unfortunately, these ratings
are based on a nonrandom sample (i.e. users who
take the time to volunteer a rating), making their
representativeness suspect. Furthermore, we have
observed that the scores seem to have low variance:
in a recent sample of 59 projects, we found that
scores ranged only from 7.47 to 9.07 out of 10. It
seems likely that users who do not like a piece of
software simply do not bother to enter ratings. There
do not seem to be any easily obtainable data on the
related measures of perceived ease of use and useful-
ness (Davis 1989). Opinions expressed on project
mailing lists are a potential source of qualitative
data on these facets, though again there would be
questions about the representativeness of the data.

In principle, it should be possible to survey users
to collect their satisfaction with or perceptions of
the software. However, to do so properly poses
a serious methodological problem. Because most
FLOSS projects are freely distributed through mul-
tiple channels, the population of users is unknown,
making it impossible to create a true random sample
of users. In this respect, FLOSS differs greatly from
IS developed in an organizational setting or for the
commercial market, which have a clearly defined
user population. The situation is also different from
that for the Web, another nontraditional systems
environment, because with a Web site users are by
definition the ones who visit the site, making the
population effectively self-identifying. To achieve
the same effect for FLOSS, the best solution might
be to build the survey into the software, though
doing so might annoy some users. For example,
recent versions of the Mozilla Web browser include
a program that offers to report crashes and collect
other feedback.

2.1.3. Use
Although there is some debate about its appropri-
ateness (DeLone and McLean 2003, Seddon 1997),
many studies employ system use as an indication
of IS success. For software for which use is vol-
untary, as is the case for most FLOSS, use seems

like a potentially relevant indicator of the project’s
success. Some interesting data are available. For
rare projects, these numbers can be directly mea-
sured. For example, Netcraft conducts a survey of
Web server deployment,2 which estimates the mar-
ket share of different Web servers. Other projects
that require some kind of network connection
could potentially be measured in the same way
(e.g. instant messaging or peer-to-peer file shar-
ing clients), but this approach does not seem to be
widely applicable. Avery Pennarun’s Debian Pop-
ularity Contest3 collects statistics on the usage of
software on Linux machines running the Debian dis-
tribution. Users install a program that collects and
reports usage information daily and the resulting
statistics show that packages have been installed,
and which of these have been recently used. Unfor-
tunately, these data are collected from a nonrandom
sample of machines, running a particular Linux dis-
tribution, so the results are likely not representative
of use in the broader population.

Rather than measuring actual use, it may be suf-
ficient to count the actual or potential number of
users of the software, which we label ‘popularity’
(Stewart and Ammeter 2002). A simple measure of
popularity, and a popular one in the FLOSS liter-
ature reviewed below, is the number of downloads
made of a project. Download numbers are read-
ily available from various sites. Of course, not all
downloads result in use, so variance in the con-
version ratio will make downloads an unreliable
indicator of use. Furthermore, because FLOSS can
be distributed through multiple outlets, on-line as
well as offline (e.g. on CDs), the count from any
single source is likely to be quite unreliable as a mea-
sure of total users. A particularly important channel
is ‘distributions’ such as RedHat, SuSE or Debian.
Distributions provide purchasers with pre-selected
bundles of software packaged for easy installation
and are often sold on a CD-ROM to obviate the need
to download everything. Indeed, the most popular
software might be downloaded only rarely because
it is already installed on most users’ machines and
stable enough to not require the download of reg-
ular updates. Therefore, an important measure of
popularity to consider is the package’s inclusion in
distributions.

2 http://news.netcraft.com/archives/webserver survey.html
3 http://people.debian.org/∼apenwarr/popcon/

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

126



Research Section Success in FLOSS Development: Theory and Measures

Other sources of data reflecting on users are avail-
able. Freshmeat provides a popularity measure for
packages it tracks, though a better name might be
‘interest’, as it is one step further removed from
actual use. The measure is calculated as the geo-
metric mean of subscriptions and two counts of
page viewings of project information.4 Similarly,
SourceForge provides information on the number
of page views of the information pages for projects it
supports.

Finally, it may be informative to measure use
from perspectives other than from an end user.
In particular, the openness of FLOSS means that
other projects can build on top of it. Therefore, one
measure of a project’s success may be that many
other projects use it. Package dependency informa-
tion between projects can be obtained from the
package descriptions available through the various
distributions’ package-management systems. Anal-
ysis of source code could reveal the reuse of code
from project to project (though identifying the true
origin of the code could be difficult).

2.1.4. Individual or Organizational Impacts
The final measures in DeLone and McLean’s (1992)
model are individual and organizational impacts for
the users. Though there is considerable interest in
the economic implications of FLOSS, these measures
are hard to define for regular I/S projects and

4 http://freshmeat.net/faq/view/30/

doubly hard for FLOSS projects because of the
problems defining the intended user base and
expected outcomes. Therefore, these measures are
likely to be unusable for most studies of individual
FLOSS projects.

2.1.5. Summary
To summarize, existing models of IS success sug-
gest a range of potential success measures for FLOSS
projects as shown in Table 1. However, a number of
the measures are inapplicable, while others are dif-
ficult to apply in the FLOSS environment. We note
that many of these measures are based on a vision
of system development in an organization and do
not take into account the unique characteristics of
the FLOSS development environment. A deeper
understanding of the differences between the pro-
cess model underlying the IS success literature and
the process of FLOSS development is needed.

2.2. Reconsidering Process: the Process of Floss
Development

The previous section considered how success has
been measured in the IS literature and its appli-
cability to FLOSS development. In this section, we
extend these models by re-examining the vision
of systems development underlying DeLone and
McLean’s success model to identify additional mea-
sures that might be used for FLOSS project success.
DeLone and McLean explicitly state that their model

Table 1. Success measures suggested by the IS literature

Measure of success Indicators Audience

System and
information quality

Code quality (e.g. understandability,
completeness, conciseness, portability,
consistency, maintainability, testability, usability,
reliability, structuredness, efficiency)

Users, developers

Documentation quality

User satisfaction User ratings Users, developers
Opinions on mailing lists
User surveys

Use Use (e.g. Debian popularity contest) Developers
Number of users
Downloads
Inclusion in distributions
Popularity or views of information page
Package dependencies
Reuse of code

Individual and
organizational impacts

Economic and other implications Users, developers

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

127



Research Section K. Crowston, J. Howison and H. Annabi

of project success was built by considering ‘a process
model [that] has just three components: the creation
of a system, the use of the system, and the conse-
quences of this system use’ (DeLone and McLean
2002), which we have shown graphically in Figure 2.
We note that the measures included in the model
focus on the use and consequences of the system (the
right side of the figure), and do not open up either
box in the process. While this focus may be appro-
priate given the traditional concern of IS research
with the organizational implication of IS, it seems to
unduly restrict the range of measures considered.

The choice of measures also seems to be influ-
enced by the relative ease of access to the use
environment compared to the development envi-
ronment for packaged or commercial software. In
the context of FLOSS though, researchers are fre-
quently faced with the opposite situation, in that
many aspects of the development process are pub-
licly visible while the use environment is difficult to
study or even identify. For both reasons, we believe
that it will be useful to complement previously iden-
tified IS success measures with the ones that take
advantage of the availability of data on the devel-
opment process. As a structure for analyzing the
systems development process, we draw on Hack-
man’s (1987) model of effectiveness of work teams.
An attractive feature of this model is that effective-
ness is conceptualized along multiple dimensions.
In addition to task output, Hackman includes the
team’s continued capability to work together and satis-
faction of individual team members’ personal needs as
relevant outputs. The following discussion exam-
ines such measures of success.

2.2.1. Measures of the Output of Systems Development
Two of the measures in the DeLone and McLean’s
model concern the product of the systems devel-
opment process, namely, systems quality and

information quality. We first consider possible addi-
tional measures of this process step in the FLOSS
context.

Project Completion. First, given the large number
of abandoned software projects (Ewusi-Mensah
1997), simply completing a project may be a sign
of success. However, it is common for FLOSS
projects to be continually in development, making it
difficult to say when they are completed. Faced with
this problem, Crowston and Scozzi (2002) instead
measured success as the progress of a project from
alpha to beta to stable status, as self-reported by the
team. For example, for many teams the 1.0 release
is a significant milestone.

Second, another commonly used measure of suc-
cess is whether the project achieved its goals. This
assessment is typically made by a comparison of
the project outcomes with the formal requirements
specifications. However, FLOSS projects often do
not have such specifications. Scacchi (2002) exam-
ined the process of ‘requirements engineering’ in
open source projects and provided a comparison
with the traditional processes (e.g. Davis 1990,
Jackson 1995). He argues that rather than a for-
mal process, FLOSS requirements are developed
through what he terms ‘software informalisms’,
which do not result in agreed ‘requirements doc-
umentation’ that could later be analyzed to see
whether the project has met its goals. Scacchi’s
ethnography further suggests that for FLOSS, goals
will likely come from within the project through
a discursive process centered on the developers.
Therefore, a key measure for FLOSS may be simply
developer satisfaction with the project, which corre-
sponds to Hackman’s (1987) individual satisfaction
dimension for group performance. Developer satis-
faction could be measured by surveying developers:
the developer community is much more clearly

Figure 2. Process model underlying the DeLone and McLean (1992) model of success

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

128



Research Section Success in FLOSS Development: Theory and Measures

delineated than users, making such a survey feasi-
ble. Indeed, there have already been several FLOSS
developer surveys (e.g. Ghosh 2002, Hertel et al.
2004), though not on this topic specifically. Since in
many projects there is a great disparity in the contri-
bution of developers – a few developers contribute
the bulk of the code (Mockus et al. 2000) – it may be
desirable to weight developers’ opinions in forming
an overall assessment of a project.

2.2.2. Measures of the Process of Systems Development
In DeLone and McLean’s (1992) process model,
systems development is implicitly treated as a
one-off event. However, for FLOSS projects (and
indeed many other types of projects) development is
instead an ongoing activity, as the project continues
to release ‘often and early’ (Raymond 1998). In
other words, a FLOSS project is often characterized
by a continuing process of developers fixing bugs,
adding features and releasing new versions of
the software. This characteristic of the FLOSS
development process suggests a number of possible
indicators of success.

Number of Developers. First, since many FLOSS
projects are dependent on volunteer developers, the
ability of a project to attract and retain developers
on an ongoing basis is important for its success.
Thus the number of developers involved in a project
could be an indicator of success. The number
of developers can be measured in at least two
ways. First, FLOSS development systems such as
SourceForge list developers who are formally associated
with each project, a measure that could also be
discovered through examination of Concurrent
Versions System (CVS) logs for projects where
developers contribute code directly (i.e. not via
a mediated patch submission process). Second,
examination of the mailing lists and other fora
associated with projects can reveal the number of
individuals who actively participate in development
activities without being formally associated with
the project.

Level of Activity. More important than the sheer
number of developers is their contribution to a
project. Thus the level of activity of developers in
submitting code and bug reports may be useful
as an indicator of project success. For example,
SourceForge computes and reports a measure

of project activity on the basis of the activities
of developers. Researchers could also examine
development logs for evidence of software being
written and released.

Cycle Time. Another measure related to the group
activity is time between releases. In FLOSS develop-
ment, there is a strong community norm to ‘release
early and release often’, which implies that an active
release cycle is a sign of a healthy development
process and project. For example, Freshmeat pro-
vides a vitality score (Stewart and Ammeter 2002)
that assesses how recently a project has made an
announcement of progress on the Freshmeat site.5

In addition, detailed examination of bug-fixing and
feature-request fulfillment activities might yield
useful process data indicative of the project’s status.
These processes involve interaction with the user
community and can involve applying patches of
contributed code supplied by noncore developers.
Bug reports and feature requests are often managed
through a task-management system that records the
developer and community discussions and permits
labeling of priority items and sometimes includes
informal ‘voting mechanisms’ to allow the com-
munity to express its level of interest in a bug or
new feature. The time to close bugs (or implement
requested features) and the proportion of bugs fixed
therefore might be helpful measures of the strength
of a project’s processes and thus indirectly of its
success.

2.2.3. Effects on Project Teams
Finally, because the projects are ongoing, it seems
important to consider the impact of a project on the
abilities of the project team itself and its ability to
continue or improve the development process. This
dimension corresponds to the Hackman’s (1987)
dimension of the team’s continued capability to
work together as a measure of team performance.
As Shenhar et al. put it, ‘how does the current
project help prepare the organization for future
challenges?’ (Shenhar et al. 2001).

Employment Opportunities. Some literature on the
motivation of FLOSS developers suggests that
developers participate to improve their employ-
ment opportunities (e.g. Lerner and Tirole 2002).

5 http://freshmeat.net/faq/view/27/

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

129



Research Section K. Crowston, J. Howison and H. Annabi

Thus, one can consider salary or jobs acquired through
the involvement in a particular project as possible
measures of success (Hann et al. 2004). For example,
Hann et al. (2002) found that higher status within
the Apache Project was associated with signifi-
cantly higher wages. Again, one might measure
these indicators by surveying developers. While
for a single developer these measure are con-
founded with innate talent, training, luck, etc.,
aggregating across many developers and across
time may provide a useful project-level measure
of success.

Individual Reputation. Similarly, literature also
suggests that developers participating in FLOSS
projects are rewarded with reputation in the commu-
nity, and that this reputation is a sufficient reward
for interaction. Kelty (2001) suggests that reputa-
tion might be measured through an analysis of
credits located in source code (which he terms
‘greputation’). Alternative measures of FLOSS rep-
utation might include the FLOSS communities’
implementation of a ‘Web of Trust’ at the com-
munity site Advogato6 where developer status is
conferred through peer review. Analyses of this
kind of measure face the difficulty of tying the
earning of reputation to the success of a par-
ticular project and systems that have incomplete
participation.

Knowledge Creation. Projects can also lead to cre-
ation of new knowledge for individuals as well as on
the group level (Arent and Nørbjerg 2000). Through
their participation in a project, individual develop-
ers may acquire new procedural and programming
skills that would benefit them on future projects.
This effect could be measured by surveying the
developers for their perceived learning. In addition,
following Grant’s (1996) knowledge-based view of
the firm, one can consider the project as a structure
to integrate members’ knowledge into products. In
this view, the project’s rules, procedures, norms
and existing products are a reflection of knowledge
being created by the project activities. This knowl-
edge creation can be measured by observing and
qualitatively analyzing changes in the written rules
and procedures over time and may be reflected and
transferred through the development of systems for

6 http://www.advogato.org/trust-metric.html

Table 2. Measures suggested by a re-examination of the FLOSS
process

Measure of
success

Indicators Audience

Project output Movement from alpha to
beta to stable

Developers

Achieved identified goals
Developer satisfaction

Process Number of developers Developers,
Level of activity
(developer and user
contributions, number of
releases)

users

Time between releases
Time to close bugs or
implement features

Outcomes for
project members

Individual job
opportunities and salary

Developers

Individual reputation
Knowledge creation

FLOSS project support, such as SourceForge and
Savannah. Analysis of the development of interac-
tions and support systems closely linked to a project
might give some insight into this aspect of project
success.

2.2.4. Summary of Measures from Process
Reconsideration
In summary, consideration of the process of devel-
oping FLOSS suggests a number of additional
measures indicative of success for these projects.
These measures are summarized in Table 2. We
note that as the measures move further back in the
process model, they become increasingly removed
from the user. As such, there may be a concern
about their validity as measures of success: is it
a success if a project attracts developers but not
users? Or if it develops high quality processes but
not high quality code? We have two replies to
this concern. First, the apparent disconnect may be
an accurate representation of the reality of FLOSS
projects, in which the developers frequently are
the users. Second, the measures developed in this
section should be viewed as complements to rather
than replacements for the more conventional mea-
sures of success. Using a variety of measures will
provide a richer picture of the status of a project.
As well, because many of the individual measures
seem likely to have measurement problems, or mea-
sure success from different perspectives, adopting
a portfolio of measures seems prudent.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

130



Research Section Success in FLOSS Development: Theory and Measures

2.3. Seeking Input from Floss Developers

Having reviewed the IS literature on IS success and
extended this conceptual model by considering the
unique features of the FLOSS development and use
environments, we continued our theory building by
turning to the FLOSS community for input on their
definitions of success. Our goal was to extend our
conceptual model by generating a range of ideas to
compare and extend our list of factors, rather than
the relative importance of each one or the relations
among them.

To solicit input, we posted a question solicit-
ing feedback on SlashDot7 a Web-based discussion
group that attracts considerable interest and par-
ticipation from FLOSS developers and users. This
data elicitation technique was more like an on-line
focus group (or perhaps the initial stage of a Del-
phi study) than a survey, as respondents were a
nonrandom sample, and could see and respond
to earlier postings. The rationale for this approach
to data elicitation was to match our goal of gen-
erating ideas about success measures, rather than
testing a theory or making inferences from gen-
eralizable data. To elicit comments, the following
question was posted on SlashDot on 22 April 2003
(http://slashdot.org/article.pl?sid=03/04/21/
239212):

‘There have been a number of discussions
on SlashDot and elsewhere about how good
projects work (e.g. Talk To a Successful Free
Software Project Leader), but less about how
to tell if things are going well in the first
place. While this may seem obvious, most
traditional definitions of software project suc-
cess seem inapplicable (e.g. profit) or nearly
impossible to measure for most projects (e.g.
market share, user satisfaction, organizational
impact). In an organizational setting, develop-
ers can get feedback from their customers, the
marketplace, managers, etc.; if you’re Apache,
you can look at Netcraft’s survey of server
usage; but what can the rest do? Is it enough
that you’re happy with the code? I suspect that
the release-early-and-often philosophy plays
an important role here. I’m asking not to pick
winners and losers (i.e. NOT a ranking of
projects), but to understand what developers

7 http://slashdot.org/

look at to know when things are going well
and when they’re not.’

The question received 201 responses within a few
days. A transcript of responses was downloaded
on 26 April 2003. Many of the individuals posting
answers to our question identified themselves as
developers or contributors to FLOSS projects. As a
check on their qualifications, we searched Source-
Forge for information about the posters. Although
SourceForge and SlashDot are separate sites, many
developers have strong attachments to their user
IDs and use the same one whenever possible, pro-
viding a possible link between the two systems.
For example, it seems reasonable to expect that the
user ID Abcd1234 identifies the same individual
on both systems. We identified the SlashDot IDs of
72 posters who provided useful responses (some
responses were anonymous). Of these seventy-two,
34 IDs matched a SourceForge ID exactly, and six
could be matched with a bit of research (e.g. by
matching the real name of the individual; real names
are available for a few SlashDot posters and many
SourceForge developers). Of the matched IDs, 16
and 3 respectively were listed as members of Source-
Forge projects (i.e. about half). A few other posters
had pointers to non-SourceForge FLOSS projects
on their SlashDot information page or informa-
tion about their employment, generally as software
developers. These data are not conclusive, but do
suggest that a number of the contributors to the
study had sufficient background as FLOSS devel-
opers to be able to comment knowledgeably.

The transcript was content-analyzed by two
coders. The content analysis process was carried out
using Atlas-ti, a qualitative data analysis software
package. Messages were coded using the thematic
unit as the unit of analysis. Once a measure was
identified within a message, the coder selected the
text containing the measure and coded that text
using categories from our coding scheme. A total
of 170 thematic units were identified and coded in
91 responses (i.e. some postings contained multiple
units; the remaining responses did not contain text
addressing the question, e.g. a posting containing
an advertisement). The content analysis process
employed a mixture of deductive and inductive
procedures. The initial content analytic scheme was
based on the literature review described above.
During the process of content analysis, additional
themes emerged from the data. Data analysis

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

131



Research Section K. Crowston, J. Howison and H. Annabi

Table 3. Results of the content analysis of SlashDot responses

Level 1 Level 2 Frequency Percentage (%)

User Satisfaction 14 8
Involvement 25 15

Product Meeting
requirements

9 5

Code quality 11 6
Portability 1 1
Availability 2 1

Process Activity 5 3
Adherence to
process

10 6

Bug fixing 4 2
Time 2 1
Age 1 1

Developers Involvement 16 9
Varied
developers

2 1

Satisfaction 29 17
Enjoyment 8 5

Use Competition 4 2
Number of users 2 1
Downloads 3 2

Recognition Referral 3 2
Attention and
recognition

9 5

Spin-offs 6 4
Influence 4 2

Total 170

continued until saturation was reached. The two
raters agreed on the codes for 78% of the units. We
felt that this level of agreement was sufficient for the
purposes of the analysis (identification of measures
to compare to the literature review), so we did not
go on to refine the definitions of codes or retrain
the coders to increase agreement. The results of the
content analysis are summarized in Table 3.

The codes were organized into a two-level
hierarchy for presentation, with detailed codes
(Level 2 in the table) clustered into meta-categories
(Level 1). 32% of the units included elements
from the Developers meta-category, indicating that
the respondents felt that a project is successful if
the developers are involved, satisfied, enjoyed the
process and that there is a variety of them. The
Users meta-category also had a large number of
responses. 23% of units indicated that the poster felt
a project was successful if it satisfies users (other
than developers) and that users are involved in
discussions and bug reports. Involvement of both
users and developers was frequently mentioned,
accounting for 31% of the units. Project recognition

codes were found in 11% of the units, exceeding the
number of responses indicating Use as a measure
of success, which accounted for 5% of instances.
Finally, the product’s Quality (13%) and Process
(13%) were suggested to be measures of success
by developers as well. Note that percentages are
reported only to more completely describe the data.
Given the nonrandom sample of contributors and
the open data elicitation technique, the frequency of
a response should not be interpreted as important.

Overall, the responses of the developers posting
on SlashDot were in general agreement with the
list of success measures we developed from the
literature and our re-examination of the process.
The analysis indicates that developers found their
personal involvement, satisfaction and enjoyment
to be measures of the success of a project, consistent
with the view of FLOSS as ‘software that scratches
an itch’. However, some new themes did emerge
from the coding.

• First, a number of respondents suggested recog-
nition (e.g. mention on other sites) as a measure
of project success. This measure could be opera-
tionalized by searching the Web for the project
name (for projects with unique names) or for the
URL of the project’s home page. A related sug-
gested measure was the influence of the product
or project’s process on other FLOSS groups and
other commercial settings. These responses are
consistent with the literature on FLOSS devel-
opers’ motivations that suggest recognition as a
primary motivation for involvement.

• A second category that emerged was the level
of involvement of the users as indicated by
involvement of the users in submitting bug
reports and participating in the project mailing
lists. We had considered contributions from
developers, but these responses emphasize the
fact that FLOSS projects are also dependent on
help from users to identify problems and post
suggestions.

• A final category that emerged from the data was
the issue of porting, that is, moving a system
from one operating system platform to another.
Developers consider porting of a product to
different systems (especially to Windows) and
requests for such ports as a measure of the
success of the product. This theme might be
considered a special case of popularity.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

132



Research Section Success in FLOSS Development: Theory and Measures

What was also surprising was what respondents
did not say, in that none of the respondents men-
tioned some of the measures of success we had
identified. For example, though several authors
have suggested that developers are motivated by
the chance to learn and perhaps get a better job,
none of the respondents mentioned these factors. A
possible explanation is a strong community norm on
SlashDot that endorses altruism over expressions of
self-interest, which may have restricted discussion
in that non-anonymous and community-moderated
forum.

2.4. Success Measures in Recent Floss Research

In the previous sections, we developed a list
of possible success measures for FLOSS projects
on the basis of a review of the IS literature,
with extensions based on a consideration of the
FLOSS development process and feedback from
FLOSS developers. In this section, we examine the
current state of academic research on FLOSS. To
understand how success has been operationalized
in recent FLOSS research, we carried out a content
analysis of the working articles posted on the
http://opensource.mit.edu/pre-press Web site. As
of 1 March 2005, the site included 182 recent
working articles and abstracts, thus presenting
a convenient cross section of the literature. The
rationale for using this sample of articles was that
the abstracts for the articles were all on one page,
making it much easier to collect them (as against
doing manual searches across multiple journal
Web sites), the articles were recent, having not
been delayed by the publication cycle, and the
articles presented a broad cross section of FLOSS
research, while journal publications likely have
some selection based on the interests of the journal.

Four people coded the articles on the site for
type of article (empirical vs conceptual) and for
use of project success as a dependent variable (if
any). The articles were divided into three groups
for initial coding by three of the coders, and the
empirical articles were then recoded by a fourth
coder to ensure comparability in the coding. Of
the 182 articles, 84 were deemed to be empirical
studies. Of these only 14 were identified as studying
success, performance or effectiveness of project
teams in some manner. Table 4 shows the specific
concepts and measures we found with citations to
the associated articles.

There are two striking features of this table.
Firstly, there is a wide range of alternative mea-
sures of project success; the field has not set-
tled on any one measure, or systematic group of
measures. Secondly, there are a great many mea-
sures related to the process of system creation itself,
especially if one includes ‘learning by developers’
as an outcome measure internal to the team. This
result is pleasingly consistent with reconsideration
of IS success models in the FLOSS context pre-
sented above, which pointed to the early stages
of systems development as particularly important
to an understanding of IS success in the FLOSS
context.

3. SUMMARY OF CONCEPTUAL SCHEME
FOR FLOSS SUCCESS

Table 5 presents a summary of the success mea-
sures, and possible operationalizations that we have
discussed above. Using our reconsideration of the
FLOSS process as its framework, the table draws
together the insights from the review of the IS liter-
ature, our extension of these models in light of the
FLOSS process, input from FLOSS developers via
SlashDot and our analysis of the existing literature
studying FLOSS.

4. EMPIRICAL STUDY OF SUCCESS
MEASURES USING SOURCEFORGE DATA

The previous section of this article developed a
conceptual model of success factors on the basis of
the literature and theoretical considerations and
compared these to developer opinions and the
current state of the empirical FLOSS research. In
this section, we continue our examination of suc-
cess measures empirically, by using data from
SourceForge. This study demonstrates the opera-
tionalization of three of the measures we suggest
above and allows us to assess their convergent
validity. Following our report of this study, we
consider the implications of our findings for our
theory building and to suggest future avenues of
research.

From the measures developed above, we chose
the number of developers (assessed from the records
of the project and from bug-fixing logs), bug-fixing
time and popularity (assessed from the number

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

133



Research Section K. Crowston, J. Howison and H. Annabi

Table 4. Success measures in recent FLOSS research

Type Measure Operationalization Example citations

System creation Activity/effort SourceForge activity level Crowston et al. 2004
Crowston and Scozzi 2002

Time invested per week by
administrators

Stewart and Gosain in press

Time spent in discussion Butler et al. 2002
Number of message posts on
SourceForge

Krishnamurthy 2002

Size of development
team

Number registered as developers on
SourceForge

Krishnamurthy 2002,
Stewart and Gosain in press

Number checking code into CVS Mockus et al. 2000,
Reis and Fortes 2002

Number of posters on mailing lists Mockus et al. 2000
Number of posters in bug tracker Crowston et al. 2004

Programmer
productivity

Lines of code per programmer per year Mockus et al. 2000

Project Active or not on SourceForge Giuri et al. 2004
development status Development stage on SourceForge Crowston and Scozzi 2002

Krishnamurthy 2002,
Stewart and Gosain in press

Task completion Speed in closing bugs or tracker items Mockus et al. 2000,
Stewart and Gosain in press
Crowston et al. 2004

Development of
stable processes

Description of development processes Reis and Fortes 2002

System quality Modularity Modularity of source code Shaikh and Cornford 2003
Correctness Defects per lines of code/deltas Mockus et al. 2000
Manageability Lines of code under package

management
González-Barahona and Robles
2003

Maintainability Common coupling Schach et al. 2005
Schach et al. 2002

System use Interest SourceForge page views Krishnamurthy 2002,
Stewart and Gosain in press
Crowston et al. 2004

Copies in
circulation

SourceForge downloads Krishnamurthy 2002,
Stewart and Gosain in press
Crowston et al. 2004

Market share Netcraft survey Mockus et al. 2000
Support
effectiveness

Number of questions effectively
answered

Lakhani and Wolf 2003

Time spent seeking help/providing help Lakhani and Wolf 2003

System
consequences

Learning by
developers

Motivations of developers for reading
and answering questions

Lakhani and Wolf 2003

Tool development Description of tools Reis and Fortes 2002

of downloads and viewings of project Web pages),
and inclusion in distributions. These measures were
chosen because they span the reconsidered FLOSS
development process discussed above, including
inputs (number of developers), process (speed of
bug fixing) and output (popularity), and because
the data were representative of the kinds of data
used in prior research.

Our analysis aims at assessing the utility of these
measures for future research. Each has good face
validity, in the sense that a project that attracts
developers fixes bugs quickly, and which is pop-
ular does seem like it deserves to be described
as a success. We are also interested in assessing
how these measures relate to one another: do they
measure the same construct or are they measuring

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

134



Research Section Success in FLOSS Development: Theory and Measures

Table 5. Summary of concepts for Information Systems success in FLOSS context

Process phase Measure Potential indicators

System creation and
maintenance

Activity/effort File releases, CVS check-ins, mailing list discussions, tracker
discussions, surveys of time invested

Attraction and retention of
developers (developer
satisfaction)

Size, growth and tenure of development team through
examination of registration, CVS logs. Posts to dev. mailing
lists and trackers. Skill coverage of development team.
Surveys of satisfaction and enjoyment

Advancement of project status Release numbers or alpha, beta, mature self-assessment,
request for enhancements implemented

Task completion Time to fix bugs, implementing requests, meeting
requirements (e.g. J2EE specification). Time between releases

Programmer productivity Lines of code per programmer, surveys of programmer effort
Development of stable processes
and their adoption

Documentation and discussion of processes, rendering of
processes into collaborative tools, naming of processes,
adoption by other projects/endeavors

System quality Code quality Code analysis metrics from software engineering
(modularity, correctness, coupling, complexity)

Manageability Time to productivity of new developers, amount of code
abandonment

Documentation quality Use of documentation, user studies and surveys
System use User Satisfaction User ratings, opinions on mailing lists, user surveys

Number of users Surveys (e.g. Debian popularity contest), downloads,
inclusion in distributions, package dependencies, reuse of
code

Interest Site pageviews, porting of code to other platforms,
development of competing products or spin-offs

Support effectiveness Number of questions effectively answered, time required to
assist newbies

System
consequences

Economic implications Implementation studies, e.g. total cost of ownership, case
studies of enablement

Knowledge creation Documentation of processes, creation of tools
Learning by developers Surveys and learning episode studies
Future income and opportunities
for participants

Longitudinal surveys

Removal of competitors Open sourcing (or substantial feature improvement) of
competing proprietary applications

different aspects of a multidimensional success
construct? And most importantly, what insight do
they provide into the nature of the development
processes in the different projects?

4.1. Method
In order to assess the utility of these measures,
we first developed operationalizations for each
measure on the basis of data available on the
SourceForge Web site. We then collected data
from the SourceForge system, using Web spiders
to download the html pages and parsing out the
relevant fields. With the data in hand, we extracted
each individual measure, achieving results, which
we present below. We then examined the measures’
relationships using a correlation matrix (with Bon-
feronni corrections for multiple correlations) to see

if these measures measure the same or different
things.

4.1.1. Operationalization
Inputs: Developer Counts. We operationalized the
number of developers involved in a project in
two ways. First, we extracted the developer
count from the SourceForge project summary
pages. Alternative operationalizations considered
included analyzing the CVS logs to count the devel-
opers contributing, but this method assumes that all
projects allow all developers direct access to the CVS
(rather than using a patch submission system) and,
more problematically, that only those contribut-
ing code to CVS should be counted as developers.
Therefore, we used the project’s own definitions of

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

135



Research Section K. Crowston, J. Howison and H. Annabi

developers. The counts on the SourceForge sum-
mary page are self-reported data, but since being
listed as a developer there involves both an appli-
cation and approval by a project administrator, it
provides a useful measure of developer involve-
ment. In order to assess how well projects were
doing in attracting and retaining developers, we
analyzed the change in developer counts over time.
A project that has a growing number of developers
is more successful in attracting developers than one
that has a shrinking number. These changes were
analyzed both as categorized time series and using
a weighted delta more appropriate for our intended
correlation study.

Second, since the FLOSS development process
relies on contributions from active users as well
as core developers, we developed a measure that
reflected the size of this extended team, rather
than just the core developers. As a proxy for the
size of the extended development community, we
counted the number of individuals who posted
a bug report or message to the SourceForge
bug tracker. Alternative operationalizations of this
construct would include counting posters on the
various mailing lists, including development lists
and user-support lists. Analyzing instead the bug
tracker was practically convenient (as we were
already collecting that data), but participation
there also demonstrates closer involvement in the
project than just posting user questions to the
mailing list, as well as being a venue where direct
interaction between users and developers would be
found.

Process: Speed of Bug Fixing. We operationalized
team performance in the speed of bug fixing by
turning to the bug tracker provided to SourceForge
projects. We examined how long it took the program
to fix bugs by calculating the lifespan of each bug
from report to close using the opened and closed
timestamps recorded by the bug tracker. The most
straightforward analysis would be to calculate each
project’s average bug-fixing time. However, this
approach has several problems. First, the time taken
to fix bugs is highly skewed (most bugs are closed
quickly, but a small number take much longer),
making an average unrepresentative. Second and
more problematically, because not all bugs were
closed at the time of our study, we do not always
know the actual lifespan, but only a lower bound.
This type of data is described as ‘censored’ data.

Simply leaving out these unclosed bugs would bias
the estimated time to fix bugs. Finally, analyzing
only the average does not take into account available
bug-level data. If there are differences between
projects in the types of bugs reported (e.g. in their
severity), then these differences could affect the
average lifespan for a project. In Section 4.3 we
describe how we approached these difficulties using
the statistical approach known as survival or event
history analysis.

Outputs: Popularity. Our final measure, popular-
ity, was assessed in three ways. First, we extracted
the number of downloads and project page views
reported on the SourceForge project pages.8 Because
some projects were older than others, we opera-
tionalized this aspect of popularity as downloads
and page views per day. In keeping with a port-
folio approach to success measurement, we also
measured popularity by examining whether the
project produced programs that were included in the
Debian Linux distribution, the largest distribution of
FLOSS. Debian is distributed as a base installation
and a set of additional packages for different pro-
grams. Not all the programs produced by FLOSS
projects are candidates for inclusion in a Linux
distribution (for example, some projects are writ-
ten only for the Windows or Mac OS X platform),
so this measurement was taken only for projects
producing programs eligible for inclusion in the
distribution.

4.2. Data Collection

To gather data about the projects, we developed a
spider to download and parse SourceForge project
pages. Spidering was necessary because the Source-
Forge databases were not publicly available.9 Data

8 The SourceForge Web site at the time of data collection noted
that ‘Download statistics shown on this page for recent dates
may be inaccurate’, but our examination of the data suggests a
systematic under-reporting, rather than a bias in favor of one
project or another. As a result, while the absolute numbers may
be wrong, the data are sufficient to indicate relative performance
of projects and the relationships of these data to other variables.
9 In the period between our research and this publication a
limited amount of SourceForge data became available directly
from database dumps provided to researchers via a group based
at Notre Dame (http://www.nd.edu/∼oss/Data/data.html). It
is our understanding that this data source does not include
tracker or mailing list information, but certainly if the conditions
are acceptable to researchers and the data adequate, this appears
to be an excellent source of clean data.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

136



Research Section Success in FLOSS Development: Theory and Measures

were collected at multiple points to allow for a
longitudinal analysis. We collected data in Febru-
ary 2001 and April 2002. We also obtained data
from Chawla et al. for October 2003 (Chawla et al.
2003) and from Megan Conklin for October 2004 and
February 2005 (Conklin 2004). These data have been
collated and made available via the FLOSSmole
project (http://ossmole.sourceforge.net/, Howison
et al. In press). The use of data from multi-
ple points in time provides a dynamic view of
the projects lacking in most analyses of FLOSS
projects.

At the time we started our study, SourceForge
supported more than 50,000 FLOSS projects on a
wide diversity of topics (the number was 78,003
as of 21 March 2004 and 96,397 projects and more
than 1 million registered users by 28 February 2005).
Clearly not all of these projects would be suitable
for our study: many are inactive, many are in fact
individual projects rather than the distributed team
efforts we are studying, as previous studies have
suggested (Krishnamurthy 2002), and some do not
make bug reports available. While we were able to
assess these difficulties at the time of our original
project selection, the FLOSSmole data spans five

years and covers all the projects on the site over that
period and so we illustrate our next point with that
more complete data. With respect to our first mea-
sure, developers listed on SourceForge homepages,
our data confirmed the impression gained from
previous research that few SourceForge projects
represent team efforts. Of the 98,502 projects that we
examined in the SourceForge system up to February
2005, 64,881 (67%) never had more than one devel-
oper registered to the project at any time in the five
years, as shown by the distribution of developer
counts shown in Figure 3.

It was also clear that not all projects used the
bug tracking system sufficiently to allow the cal-
culation of community size, nor the speed of bug
fixing. In order to collect useful data for these mea-
sures we restricted our study to projects that listed
more than seven developers and had more than
100 bugs in the project bug tracker at the time of
selection in April 2002. This restriction was jus-
tified theoretically as well as practically: having
multiple developers suggests that the project is
in fact a team effort. Having bug reports was a
necessary prerequisite for the planned analysis, as
well as indicative of a certain level of development

Figure 3. Maximum number of listed developers per project on SourceForge projects over the 5-year period from 2001
to 2005

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

137



Research Section K. Crowston, J. Howison and H. Annabi

Figure 4. Example bug report and followup10 messages

effort. Quite surprisingly, we identified only 140
projects that met both criteria. The sample includes
the projects curl, fink, gaim, gimp-print,
htdig, jedit, lesstif, netatalk, phpmyad-
min, openrpg, squirrelmail and tcl. Those
familiar with FLOSS will recognize some of these
projects, which span a wide range of topics and
programming languages.

To study the performance of bug fixing, we
collected data from the SourceForge bug tracking

system, which enables users to report bugs and to
discuss them with developers. As shown in Figure 4,
a bug report includes a description of a bug that can
be followed up with a trail of correspondence. Basic
data for each bug includes the date and time it was
reported, the reporter, priority and, for closed bugs,
the date and time it was closed. To collect this data,

10 Adapted from http://SourceForge.net/tracker/index.php?
func=detail&aid=206585&group id=332&atid=100332

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

138



Research Section Success in FLOSS Development: Theory and Measures

we developed a spider program that downloaded
and parsed all bug report pages for the selected
projects. The spider was run in March 2003. Unfortu-
nately, between selection of projects and data collec-
tion, some projects restricted access to bug reports,
so we were able to collect data for only 122 projects.

Once obtained and parsed we conducted a basic
exploration of the data for the purposes of data
cleaning, which revealed problems with the quality
of the data for some of the projects. For example, one
team had apparently consolidated bug reports from
another bug tracking system into the SourceForge
tracker. These copied-over bugs all appeared in
SourceForge to have been opened and closed within
minutes, so this project was eliminated from further
analysis. Another project was eliminated because
all of the bug reports were in Russian, making the
data impossible for us to interpret (and apparently
for others as well: only three posters had partici-
pated, despite nine developers being registered to
the project). As a result, the sample for the remain-
der of the analysis was reduced to 120 projects. We
also deleted a few bug reports where the computed
lifespan was 0 seconds or less due to errors in the
data or in the parsing. We obtained data on a total
of 56,641 bug reports, an average of 472 per project.
The median number of reports was 274, indicating
a skewed distribution of number of bug report per
project.

4.3. Analysis

In this section we present the analyses we performed
for each of our measures, deferring discussion of the
results to the next section.

Popularity. Of our two measures of popularity,
number of developers and community size, com-
munity size required little detailed analysis. We
simply counted the unique number of posters to
the bug trackers on SourceForge, dropping only the
system’s indicator for anonymous posting.

The analysis of developer numbers was more
involved because, as mentioned above, a unique
feature of our data on developer numbers is that
we had data over time, which allowed us to assess
how the number of developers in a project changed
over time, and we wanted to take advantage of
that. However, since we had only five data points,
measured at inconsistent time intervals, it was
impossible to apply standard time series analysis

techniques. We therefore simply grouped projects
into six categories on the basis of how the number
of developers had changed over time – whether
it had risen, fallen or stayed the same, and how
consistently it had done so.11 The precise definitions
of the six categories is presented in Table 6. Figure 5
shows the series, allowing a visual inspection to
assess the reasonableness of the categorizations.

A visual inspection of the diagrams suggests
that the grouping of the patterns is reasonable.
Figure 5(a) shows the trend for the high number
of projects in our sample that have continually
attracted developers. Figure 5(b) shows the trend
for projects that tend to grow but which have, at
times, fallen. Figure 5(c) shows unchanged projects,
or projects that move up and down without a
trend. Not all the projects in this category were
started at the time of our first data collection, so
further data collection may reveal a trend and
facilitate sorting into one of the other categories.
Figure 5(d) shows projects that have fallen for at
least half of their life spans and risen in only
one period. Interestingly the rise is almost always
early in the life of the project, followed by a
sustained decline. These projects appear to have
attracted some initial interest but were unsuccessful
in retaining developers. This may indicate troubles
in the teams despite an interesting task. Figure 5(e)

Table 6. Definitions of categories of pattern of change in
developer counts

Category Description

1. Consistent risers No falls, rising: a pattern of
consecutive rises at least half as
long as the whole series was
founda

2. Risers Mostly rising but with at least one
fall

3. Steady or not treading Unchanged or neither rising nor
falling

4. Fallers At most one rise but mostly
falling: a pattern of consecutive
falls at least half as long as the
whole series was founda

5. Consistent fallers Always falling, no rises at all
6. Dead projects Project removed from

SourceForge

a A rise (or fall) followed by no change was counted as two consecutive
rises (or falls).

11 We have made the code for this categorization available via
the FLOSSmole project

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

139



Research Section K. Crowston, J. Howison and H. Annabi

(a) (b)

(c) (d)

(e) (f)

Figure 5. Changes in developer counts per project over time, categorized by trend. (Log scale: note that the vertical axis
is inconsistent with lower total numbers in (e) and (f))

shows projects that have never grown and have
lost members for at least two consecutive periods.
Finally, Figure 5(f) shows projects for which data
became unavailable. These are dissolved projects
that have been removed from SourceForge. The
results of comparing these categorizations with the
whole SourceForge population are presented below
in Section 4.5, which allow us to interpret our results
in the full context.

While the developer series categorization was
useful, it was not suitable for the correlation study
of the proposed success measures. For that purpose,
we computed a weighted average of the changes
from period to period, using as weights the inverse
of the age (1/1 for the change from 2004 to 2005,
1/2 for the change from 2003 to 2004, etc.). This
procedure was adopted on the basis of the theory
that the ability to attract and retain developers is an

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

140



Research Section Success in FLOSS Development: Theory and Measures

Figure 6. Plot of bug survival versus time for high (9), default (5) and low (1) priority bugs

indicator of success and to focus attention on the
growth (or decline) in developers and to give more
weight to recent experience. This weighted average
figure is reported below:

Community Size. The poster of bug reports and
related messages are identified by a SourceForge
ID (though postings can be anonymous), making
it possible to count the number of distinct IDs
appearing for each project. We counted a total of
14,922 unique IDs, of whom 1280 were involved in
more than one project (one was involved in eight
of the projects in our sample). The total counts per
project were log-transformed to correct skew.

Bug-fixing Time. As discussed above, the analysis
of bug-fixing speed is complicated by the right-
censored data available. Analysis of censored
lifespan data involves a statistical approach known
as survival or event history analysis. The basic
idea is to calculate from the life spans a hazard
function, which is the instantaneous probability of
a bug being fixed at any point during its life or
equivalently the survival function, which is the
percentage of bugs remaining open. A plot of the

survival over time for all bugs in our sample is
shown in Figure 6. The plot shows that bugs with
higher priorities are generally fixed more quickly,
as expected, but some bugs remain unfixed even
after years.

The hazard function (or more usually the log of
the hazard function) can be used as a dependent
variable in a regression. For our initial purpose of
developing a project-level measure of bug-fixing
effectiveness, we simply entered project as a fac-
tor in the hazard regression along with the bug
priority, allowing us to compute a hazard ratio
for each project (ratio because of the use of the
log of the hazard). The hazard ratios are the
regression weights for the dummy variable for
each project in the hazard function, using the first
project as the baseline. The analysis was performed
using the R-Project statistical system (http://www.
r-project.org/), specifically the psm function from
the Survival and Design packages. We experi-
mented with different functional forms for fitting
the bug hazard rates. Somewhat surprisingly, the
form that fitted best was an exponential (the R2 for
the fit was 0.51), that is, one in which the hazard
rate is not time varying. Therefore the hazard ratio
for each project is reported below:

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

141



Research Section K. Crowston, J. Howison and H. Annabi

Popularity. The counts of project downloads and
page views extracted from the downloaded html
pages were divided by age to compute downloads
and page view per day and log-transformed to
correct skew.

Our additional measure of popularity, inclusion
in a distribution, required additional analysis. We
first examined the list of Debian packages manually
to match packages to the projects in our SourceForge
sample. To do this for each project we examined the
output of the Debian apt-cache program, which
searches package names and descriptions, and
the http://packages.debian.org/site, which allows
searching filenames within package contents. We
then examined the SourceForge homepages of the
projects to be sure that we had an accurate match.
For those that were included we observed that
one project was linked to one or more (sometimes
many more) packages, but we did not observe many
projects that were packaged together. As discussed
above, some of the projects in our sample are not
candidates for inclusion in the Debian distribution
because they do not run on Linux and were not
included in this measure. For example, fink is a
package-management system for Mac OS X and
Gnucleous is a Windows client for the Gnutella
network. We found that there were 110 packages
(out of 120, or 92%) that could be installed and run
on a Debian Linux system and 63 (57%) of these
were packaged and distributed by Debian, while 47
(43%) were not. One package was undergoing the
Debian quality assurance process but was not yet
available through the standard installation system
and was therefore coded as not included. Projects
with eligible programs that were included in Debian
were given a score of 1 (or YES), and projects
without included programs were given a score of 0
(or NO); ineligible projects were tagged with NA.

4.4. Results

The results of measuring these success measures
across our sample of 120 projects are presented
below. First we present descriptive statistics for the
individual measures and then present the results of
examining the correlations between the measures.
We conclude our results discussion by reporting on
the practicality of our operationalizations. Table 7
shows the descriptive statistics for the individual
measures.

Table 7. Descriptive statistics for sample success measures

Variable Mean Median SD

Lifespan (days)a 1673 1699 198
Developers in 2001 8.63 7 7.20
Developers in 2002 15.56 12 11.22
Developers in 2003 18.19 12 16.29
Developers in 2004 20.06 14 19.95
Developers in 2005 20.22 14 20.57
Weighted delta (see text)a 1.60 0.72 3.26
Posters to bug trackera 140 86 207
Log bugsa 5.78 5.61 0.84
Closed bugsa 405 234 489
Log median bug lifetimea 14.44 14.39 1.29
Hazard ratioa 1.13 1.10 1.04
Log downloads (all time)b 11.29 11.87 3.38
Log downloads (per day)b 4.32 4.44 2.24
Log page views (all time)b 13.85 14.15 2.14
Log page views (per day)b 6.45 6.74 2.12
Debian package? 63 Yes 47 No 10 NA

a N = 120.
b N = 118.

To examine the relationships among the variables
we measured, we examined the correlations, given
in Tables 8 and 9. Forty-two of the 136 correlations
are statistically significant indicating that there is a
genuine relationship. (With 120 cases and applying
the Bonferonni correction for the 136 comparisons
possible among 17 variables, the critical value for
significance at p = 0.05 is r = 0.32.) None of the
proposed success measures are correlated with
project lifespan, suggesting that they do provide
some indication of the performance of the project
rather than just accumulation of events.

Bold and underlined correlations are significant
at p < 0.05, using a Bonferonni correction for the
number of correlations.

The counts of number of developers at different
points in time are correlated (the upper box in
Table 8), as would be expected given that they
constitute a time series. The counts are also
correlated with the computed weighted average of
changes in developers. Interestingly, the developer
counts are also correlated to number of bugs
reported (the lower box in Table 8). It may be that
developers themselves post bug reports and so more
developers constitutes more activity. Alternately, it
may be that activity attracts developers. As well, the
count of participants in the bug tracker is correlated
with number of bugs, but not with number of listed
developers (the upper left box in Table 9). These
relationships suggest that individuals post only

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

142



Research Section Success in FLOSS Development: Theory and Measures

Table 8. Correlations among sample success measures

Lifespan Developers
in 2001

Developers
in 2002

Developers
in 2003

Developers
in 2004

Developers
in 2005

Weighted
delta

Lifespan 1.000
Developers in 2001 0.265 1.000
Developers in 2002 0.061 0.627 1.000
Developers in 2003 −0.016 0.648 0.761 1.000
Developers in 2004 −0.047 0.656 0.643 0.949 1.000
Developers in 2005 −0.042 0.658 0.643 0.943 0.998 1.000
Weighted delta −0.023 0.374 0.352 0.789 0.913 0.922 1.000
Posters to bug tracker 0.052 0.144 0.266 0.200 0.226 0.230 0.186
Log bugs 0.008 0.158 0.396 0.392 0.398 0.394 0.316
Closed bugs 0.034 0.191 0.381 0.322 0.344 0.348 0.272
Log median bug lifetime 0.087 0.166 0.103 0.208 0.190 0.184 0.172
Hazard ratio 0.200 0.219 0.084 0.177 0.158 0.147 0.134
Log downloads (all time) 0.136 0.056 0.198 0.212 0.241 0.238 0.240
Log downloads (per day) 0.010 0.059 0.228 0.249 0.295 0.287 0.283
Log page views (all time) 0.001 0.043 0.228 0.245 0.277 0.279 0.269
Log page views (per day) −0.060 0.035 0.224 0.245 0.280 0.282 0.271
Debian package? 0.285 0.153 0.116 0.101 0.064 0.054 0.054

Table 9. Correlations among sample success measures, continued

Posters
to bug
tracker

Log
bugs

Closed
bugs

Log
median

bug
lifetime

Hazard
ratio

Log
downloads
(all time)

Log
downloads
(per day)

Log
page views
(all time)

Log
page views
(per day)

Posters to bug tracker 1.000
Log bugs 0.592 1.000
Closed bugs 0.801 0.718 1.000
Log median bug lifetime 0.179 0.087 0.232 1.000
Hazard ratio 0.158 0.114 0.239 0.868 1.000
Log downloads (all time) 0.359 0.268 0.252 0.095 0.068 1.000
Log downloads (per day) 0.450 0.343 0.312 0.088 0.017 0.909 1.000
Log page views (all time) 0.435 0.462 0.355 0.031 0.146 0.660 0.724 1.000
Log page views (per day) 0.433 0.463 0.354 0.038 0.160 0.647 0.722 0.998 1.000
Debian package? 0.125 0.073 0.088 0.063 0.115 0.201 0.240 0.171 0.150

a few bug reports, so more bug reports implies
a greater number of participants. The correlation
between posters and the number of closed bugs is
particularly strong (r = 0.718).

The counts of downloads and page views (all time
and daily) are all strongly correlated (the lower right
box in Table 9), suggesting that they offer similar
measures of popularity. They are also correlated
with the number of bugs (the lower left box in
Table 9) and the count of participants in the bug
tracker. These correlations taken together suggest
that the count of participants and number of bugs
function more like indications of the popularity
of a FLOSS project, rather than the success of its
development processes. On the other hand, the

hazard ratio for bug lifetimes and the median bug
lifetime are not significantly correlated with any of
the other variables, suggesting that they do provide
an independent view of a project’s performance.

4.5. Discussion

The study provided useful data for reflecting
on the conceptual model for success in FLOSS
development developed in the first half of this
article. Because many of these findings reveal
themselves as limitations in our study, we first
discuss these and attempt to distill general advice
for FLOSS research using success as a variable.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

143



Research Section K. Crowston, J. Howison and H. Annabi

The measures applied in this article have good
face validity as indicators. The analysis presented
above allows us to extend our examination of the
validity and utility of the measures. The high cor-
relation among many of these measures indicates
a degree of convergent validity, since the differ-
ent measures do correlate, particularly number of
developers and popularity. Examining these cor-
relations and correlations with other variables in
more detail suggests room for improvement in
the measures. Clearly additional data could be
collected to increase the accuracy of the devel-
oper counts. Furthermore, our counts are merely
aggregate measures that may mask many devel-
opers leaving and joining a project. These more
specific counts would enable us to determine if
some projects are subject to significant ‘churn’ of
individual developers, or conversely of the ‘tenure’
of individuals as developers on projects. Such a
measure might be a theoretically more valuable, as
it would have implications for development and
retention of knowledge. As with our analysis of bug
lifetime, such analyses would need to employ event
history statistics to account for the right-censored
data.

Further possibilities for measuring developer par-
ticipation exist, which may provide more accurate
and valuable measures. Such opportunities include

measuring participation in mailing lists and devel-
oper’s involvement in code writing directly by
examining logs from the CVS system. Each of these
measures, however, suffers from the difficulty of
inferring departure and ‘tenure’ because it is pos-
sible to ‘lurk’ in each of these fora. For example, if
a developer is observed to post once in 2003 and
again in 2005, was the developer always a part of
the project, or did the developer leave and rejoin?
It might be worth developing a measure of consis-
tent engagement, but it would need to account for
different patterns for different individuals.

Another instructive limitation is that in building
a sample of projects to study, we seem to have
found projects that seem to be mostly successful,
by and large. This can be seen in a comparison of
the categorization of developer count series from
our sample and from the whole SourceForge pop-
ulation. We divided the population of SourceForge
projects into the same six categories. Figure 7 shows
a comparison of the distribution of time series into
our categories between our sample and the total
SourceForge population. We required three peri-
ods of data collection to calculate the category, so
the full population includes only 39,414 projects,
excluding 59,154 projects that are either too new
or already dead before our fourth measurement
point. The comparison shows that our sample of
120 projects has a higher proportion of constant

Figure 7. Changes in developer counts per project over time, categorized by trend

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

144



Research Section Success in FLOSS Development: Theory and Measures

risers and a lower proportion of fallers and dead
projects. The difference in the distributions is highly
significant (χ 2 = 805, df = 5, p < 0.001). This result
suggests that our sample, projects with at least seven
developers and 100 bugs in April 2002, is compara-
tively successful, at least in terms of attracting and
retaining developers over time.

As a result of this unintentional bias in our sam-
ple construction, the sample may not have sufficient
variance on success, affecting the observed corre-
lations reported above. To address this concern,
FLOSS research should be aware that selecting on
the basis of team size and process features, such
as use of the SourceForge trackers, risks selecting
only successful projects and should therefore make
a special effort to collect data on a broader range
of projects, including some that seem clearly to be
unsuccessful. This advice is true for quantitative
research but is also relevant to case study research;
there is a real need for detailed research on failed
FLOSS projects.

A second instructive limitation is that we fol-
lowed the standard but inadequate practice of
using popularity measures unadjusted for poten-
tial ‘market size’. A project’s downloads are capped
by their total potential downloads, their ‘potential
market’. A consumer-oriented application, such as
an instant messaging client, is of potential useful-
ness to almost all internet users, whereas a program
to model subatomic particle collision (for exam-
ple) has a much lower potential market. While the
instant messaging program might achieve only 40%
of its potential market, its absolute number will be
far higher than the number achieved by the particle
collision modeling tool, even if it is used and adored
by 95% of high energy physicists. Thus download
figures without market share data are useful only
if one considers all programs to be in competition
with each other, i.e. if one ignores the project’s
aims entirely. Some value can be salvaged by using
relative growth figures instead of the absolute num-
bers. Within limited domains of projects, it might
be possible to create categories of truly compet-
ing products for which the absolute and relative
download numbers ought to be a usable proxy for
software use. Unfortunately the self-classification of
products on sites like SourceForge (where ‘End-user
software’ is an entire category) is of little use and
identification of competitors must be carried out by
hand.

Furthermore, our analysis revealed that mea-
sures such as community size (in numbers of
posters) are more similar to these popularity mea-
sures than to the process measures. On reflec-
tion, community size should also be expected
to be heavily influenced by the potential size
of the user population, much more so than the
smaller developer numbers. A brief inspection
of our data on bug posters affirms this: the
projects with the largest number of posters are
consumer desktop applications, such as gaim.
Community size measures, therefore, should be
adjusted in the same way as downloads and
pageviews: by either using within-project changes
or by manually creating categories for competing
projects.

This discussion draws attention to an element
missing from our theory development above and
from FLOSS research in general. The phenomenon
under research, FLOSS and its development, is
generally, often implicitly, defined as any projects
that use an ‘open source license’ (usually defined
as OSI approved licenses). Our selection of projects
from SourceForge also implicitly uses this definition
of the phenomenon, as we studied SourceForge
projects, and SourceForge allows only projects using
these licenses to register with the site. The risk here
is that there are a wide range of system types,
developer goals, software development processes,
management styles and group structures all of
which are compatible with using an OSI approved
license. It is not yet clear upon what characteristics
the phenomenon should be divided, but it is clear
that the meaning of success for different types of
projects, programs, motivations and processes will
be quite different.

This observation is similar to that made by Sed-
don et al. (1999), who introduce the ‘IS Effectiveness
Matrix’. They suggest that two key dimensions on
which to base success measures are ‘the type of sys-
tem studied’ and ‘the stakeholder in whose interests
the system is being evaluated’. FLOSS development
typically occurs outside the corporate environments
in which stakeholders are explicit and interests are
often driven by the financial implications of the IS
development. However, this does not mean that
there are not stakeholders, such as core developers,
peripheral developers, corporate users, individual
users, and other whole projects who depend on the
project whose success one is trying to measure. The
conceptual model of success presented in this article

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

145



Research Section K. Crowston, J. Howison and H. Annabi

intentionally provides a much greater emphasis on
the inputs and the process of IS system develop-
ment, and thus the developers, than traditional IS
models of success. Studies of success in the FLOSS
context should closely consider both the phenomena
they are interested in (and thus relevant projects)
and from which perspective they need to measure
success, given their research interests. The develop-
ment of a taxonomy of research interests and the
identifications of the portions of the FLOSS universe
appropriate for their study would be a useful task
for future research.

5. CONCLUSIONS

This article makes a contribution to the devel-
oping body of empirical research on FLOSS by
identifying and operationalizing success measures
that might be applied to FLOSS. We developed
and presented a theoretically informed range of
measures which we think are appropriate for mea-
suring the success of FLOSS projects, and we hope
that these will be useful to researchers in the
developing body of empirical research on FLOSS
development. We complemented this theory devel-
opment through an empirical study that demon-
strated methods and challenges in operationaliz-
ing success measures using data obtained from
SourceForge and made available to the community.
This study demonstrated the portfolio approach
to success measurement by taking measures from
throughout the FLOSS development process and
by using longitudinal data. The study allowed
us to identify and communicate the limitations
of our theory development and to elaborate areas
that require particular care for researchers in this
area.

We emphasize again that we do not view any
single measure as the final word on success. As
the measures draw on different aspects of the
development process, they offer different perspec-
tives on the process. Including multiple mea-
sures in a portfolio and careful consideration as
to which measures are most appropriate for the
researcher’s current research question should pro-
vide a better assessment of the effectiveness of each
project.

While FLOSS is important ‘for its own sake’, it
is also a form of system development growing in

importance. There is substantial interest in learn-
ing from FLOSS, but such learning can proceed
only when there is a firm understanding of the
phenomenon, and understanding when it is work-
ing well is a crucial first step. Our future work
will include more detailed analysis of both effec-
tive and ineffective projects. We plan to employ a
theoretical sampling strategy based on a portfolio
of relevant success measures to choose a few FLOSS
development teams to study in depth, using both
quantitative and qualitative research methods. By
limiting the number of projects, we will be able to
use more labor-intensive data analysis approaches
to shed more light on the practices of effective
FLOSS teams.

ACKNOWLEDGEMENTS

This research was partially supported by NSF
Grants 03-41475 and 04-14468. Any opinions,
findings and conclusions or recommendations
expressed in this material are those of the author(s)
and do not necessarily reflect the views of the
National Science Foundation. The authors thank
Chengetai Masango, Kangning Wang, Yeliz Esyerel
and Qing Li for their contributions to the article.

REFERENCES

Arent J, Nørbjerg J. 2000. Software process improvement
as organizational knowledge creation: A multiple case
analysis. In Proceedings of the 33rd Hawaii International
Conference on System Sciences (HICSS-33), Wailea, Maui HI.
http://csd12.computer.org/comp/proceedings/nicss/
2000/0493/04/04934045.pdf. Accessed 16 March 2006.

Basili VR, Caldiera G, Rombach HD. 1994. Goal question
metric paradigm. In Encyclopedia of Software Engineering,
Vol. 1. Marciniak JJ (ed.). John Wiley: New York, 528–532.

Boehm BW, Brown JR, Lipow M. 1976. Quantitative
evaluation of software quality. In Proceedings of the
2nd International Conference on Software Engineering, San
Francisco, CA, 13–15 October, 592–605.

Butler B, Sproull L, Kiesler S, Kraut R. 2002. Community
effort in online groups: Who does the work and why?
In Leadership at a Distance, Weisband S, Atwater L (eds).
Lawrence Erlbaum: Mahwah, NJ.

Chawla S, Arunasalam B, Davis J. 2003. Mining Open
Source Software (OSS) Data using association rules
network. In Proceedings of the 7th Pacific Asia Conference on
Knowledge Discovery and Data Mining (PACDD), Whang

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

146



Research Section Success in FLOSS Development: Theory and Measures

K-Y, Jeon J, Shim K, Srivatava J (eds). Seoul, Korea,
461–466.

Conklin M. 2004. Do the rich get richer?: The impact of
power laws on open source development projects. Paper
Presented at the Proceedings of Open Source 2004 (OSCON),
Portland, OR.

Crowston K, Scozzi B. 2002. Open source software
projects as virtual organizations: Competency rallying
for software development. IEE Proceedings Software 149(1):
3–17.

Crowston K, Annabi H, Howison J, Masango C. 2004.
Effective work practices for software engineering:
Free/Libre open source software development. In Paper
Presented at the WISER Workshop on Interdisciplinary
Software Engineering Research, SIGSOFT 2004/FSE-12
Conference, Newport Beach, CA.

Davis AM. 1990. Software Requirements Analysis and
Specification. Prentice Hall: Englewood Cliffs, NJ.

Davis FD. 1989. Perceived usefulness, perceived ease of
use and user acceptance of information technology. MIS
Quarterly 13: 319–340.

DeLone WH, McLean ER. 1992. Information systems
success: The quest for the dependent variable. Information
Systems Research 3(1): 60–95.

DeLone WH, McLean Ephraim R. 2002. Infor-
mation systems success revisited. In Proceed-
ings of the 35th Hawaii International Conference
on System Sciences (HICSS-35), Waikola, Hawaii.
http://csd12.computed.org/comp/proceedings/hicss/
2002/1435/08/14350238.pdf. Accessed 16 March 2006.

DeLone WH, McLean ER. 2003. The DeLone and McLean
model of information systems success: a ten-year update.
Journal of Management Information Systems 19(4): 9–30.

Diaz M, Sligo J. 1997. How software process improvement
helped Motorola. IEEE Software 14(5): 75–81.

Ewusi-Mensah K. 1997. Critical issues in abandoned
information systems development projects. Communica-
tion of the ACM 40(9): 74–80.

Ghosh RA. 2002. Free/Libre and open source soft-
ware: survey and study. In Report of the FLOSS
Workshop on Advancing the Research Agenda on
Free/Open Source Software, Brussels, Belgium from
http://www.infonomics.nl/FLOSS/report/worksho-
preport.htm. Accessed 16 March 2006.

Giuri P, Ploner M, Rullani F, Torrisi S. 2004. Skills and
Openness of OSS Projects: Implications for Performance.
Laboratory of Economics and Management, Sant’Anna
School of Advanced Studies: Pisa, Italy, (Working paper).

González-Barahona JM, Robles G. 2003. Free software
engineering: A field to explore. Upgrade 4(4): 49–54.

Goranson HT. 1997. Design for agility using process
complexity measures. Agility and Global Competition 1(3):
1–9.

Gorton I, Liu A. 2002. Software component quality
assessment in practice: Successes and practical
impediments. In Proceedings of the 24th International
Conference on Software Engineering (ICSE), Orlando, FL,
555–558.

Grant RM. 1996. Toward a knowledge-based theory of the
firm. Strategic Management Journal 17: 109–122, (Winter).

Guinan PJ, Cooprider JG, Faraj S. 1998. Enabling software
development team performance during requirements
definition: A behavioral versus technical approach.
Information Systems Research 9(2): 101–125.

Hackman JR. 1987. The design of work teams. In The
Handbook of Organizational Behavior, Lorsch JW (ed.).
Prentice Hall: Englewood Cliffs, NJ, 315–342.

Hann I-H, Roberts J, Slaughter SA. 2004. Why developers
participate in open source software projects: An
empirical investigation. In Proceedings of the Twenty-Fifth
International Conference on Information Systems (ICIS 2004),
Washington, DC, 821–830.

Hann I-H, Roberts J, Slaughter S, Fielding R. 2002.
Economic incentives for participating in open source
software projects. In Proceedings of the Twenty-Third
International Conference on Information Systems (ICIS 2002),
Barcelona, Catalonia, Spain, 365–372.

Hertel G, Konradt U, Orlikowski B. 2004. Managing
distance by interdependence: Goal setting, task
interdependence, and team-based rewards in virtual
teams. European Journal of Work and Organizational
Psychology 13(1): 1–28.

Howison J, Conklin M, Crowston K. In press. Flossmole:
A collaborative repository for FLOSS research data and
analyses. International Journal of Information Technology and
Web Engineering.

Jackson M. 1995. Software Requirements and Specifications:
Practice, Principles, and Prejudices. Addison Wesley:
Boston, MA.

Kelty C. 2001. Free software/free science. First Mon-
day 6(12). http://www.firstmonday.org/issues/issue6-
12/Kelty/index.html. Accessed 16 March 2006.

Krishnamurthy S. 2002. Cave or Community? An Empirical
Examination of 100 Mature Open Source Projects. First Mon-
day 7(6). http://www.firstmonday.org/issues/issue7 6/
krisnamurthy/index.html. Accessed 16 March 2006.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

147



Research Section K. Crowston, J. Howison and H. Annabi

Lakhani KR, Wolf B. 2003. Why hackers do what they
do: Understanding motivation and effort in free/open
source software projects. Retrieved 1 March, 2005, from
http://opensource.mit.edu/papers/lakhaniwolf.pdf.

Lerner J, Tirole J. 2002. Some Simple Economics of Open
Source. The Journal of Industrial Economics 2(1): 197–234.

Mishra B, Prasad A, Raghunathan S. 2002. Quality and
profits under open source versus closed source. In
Proceedings of the Twenty-Third International Conference
on Information Systems (ICIS 2002), Barcelona, Catalonia,
Spain, 349–363.

Mockus A, Fielding RT, Herbsleb JD. 2000. A case study
of open source software development: The Apache server.
In Proceedings of the International Conference on Software
Engineering (ICSE’2000), Limerick, Ireland, 263-274.

Rai A, Lang SS, Welker RB. 2002. Assessing the validity
of IS success models: An empirical test and theoretical
analysis. Information Systems Research 13(1): 50–69.

Raymond ES. 1998. The cathedral and the bazaar. First
Monday 3: 3. http://www.firstmonday.org/issues3 3/
raymond/index.html. Accessed 16 March 2006.

Reis CR, Fortes RP. 2002. An overview of the software
engineering process and tools in the Mozilla project,
In Proceedings of the Open Source Software Development
Workshop, Newcastle Upon Tyne, UK, 155–175.

Scacchi W. 2002. Understanding the requirements for
developing open source software systems. IEE Proceedings
Software 149(1): 24–39.

Schach SR, Jin B Liguoy, Heller GZ, Offutt AJ. 2003.
Determining the distribution of maintenance categories:
Survey versus empirical study. Empirical Software
Engineering 8(4): 351–365.

Schach SR, Jin B, Wright DR, Heller GZ, Offutt AJ. 2002.
Maintainability of the Linux Kernel, IEE Proceedings-
Software 149(1): 18–23.

Seddon PB. 1997. A respecification and extension of the
DeLone and McLean model of IS success. Information
Systems Research 8(3): 240–253.

Seddon PB, Staples S, Patnayakuni R, Bowtell M.
1999. Dimensions of information systems success.
Communications of the Association for Information Systems
2(20): 61.

Shaikh M, Cornford T. 2003. Version management tools:
CVS to BK in the Linux Kernel, Paper presented at
Taking Stock of the Bazaar: The 3rd Workshop on Open
Source Software Engineering, 25th International Conference
on Software Engineering. Portland, OR. Available from
http://opensource.mit.edu/papers/shaikhcornford.pdf.
Accessed 16 March 2006.

Shenhar AJ, Dvir D, Levy O, Maltz AC. 2001. Project
success: A multidimensional strategic concept. Long Range
Planning 34: 699–725.

Stamelos I, Angelis L, Oikonomou A, Bleris GL. 2002.
Code quality analysis in open source software
development. Information Systems Journal 12(1): 43–60.

Stewart KJ, Ammeter T. 2002. An exploratory study of
factors influencing the level of vitality and popularity of
open source projects. In Paper Presented at the Proceedings
of the Twenty-Third International Conference on Information
Systems (ICIS 2002), Barcelona, Catalonia, Spain, 853–857.

Stewart KJ, Gosain S. In press. The impact of ideology
on effectiveness in open source software development
teams, MIS Quarterly.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 123–148

148


