
 8
FLOSS Project
Effectiveness Measures1

Kevin Crowston and James Howison

Introduction

In this chapter, we develop and illustrate measures of the effectiveness of FLOSS

projects. FLOSS is a broad term used to embrace software that is developed

and released under either a “free software” or an “open source” license. While
the free software and the open source movements are distinct, both kinds of
licenses allow users to obtain and distribute the software’s original source

without charge (software is “free as in beer”) and to inspect, modify, and
redistribute modifications to the source code. While the open source movement

views these freedoms pragmatically (as a development methodology), the
free software movement emphasizes the meaning of “free as in speech,”
which is captured by the French/Spanish libre, and one of their methods of

supporting those freedoms is “copyleft,” famously embodied in the General
Public License, meaning that derivative works must be made available under
the same license terms as the original. This chapter focuses on development

practices in distributed work, which are largely shared across the movements.
For example, many (though by no means all) FLOSS developers contribute to
projects as volunteers without working for a common organization or being
paid. We therefore use the acronym FLOSS to refer collectively to free/libre and

open source software.

1 This research was partially supported by NSF Grants 03-41475, 04-14468 and 05-27457.

Previous versions of this chapter have appeared as Crowston, K., Annabi, H. and Howison, J.
(2003). Defining Open Source Software Project Success. In Proceedings of the 24th International
Conference on Information Systems (ICIS 2003), December, Seattle, WA; and Crowston, K.,

Howison, J. and Annabi, H. (2006). Information Systems Success in Free and Open Source
Software Development: Theory and Measures. Software Process—Improvement and Practice,

11(2): 123–48.

SuccESSful OSS PROjEcT DESign anD imPlEmEnTaTiOn150

It is important to develop measures of effectiveness for FLOSS projects for

at least two reasons. First, having such measures should be useful for FLOSS

project managers in assessing their projects. In some cases, FLOSS projects are

sponsored by third parties, so measures are useful for sponsors to understand

the return on their investment. Second, FLOSS is an increasingly visible and

copied mode of systems development. Millions of users depend on FLOSS

systems such as Linux and on the Internet, which is itself heavily dependent

on FLOSS tools, but as Scacchi (2002a, p. 1) notes, “little is known about how
people in these communities coordinate software development across different

settings, or about what software processes, work practices, and organizational
contexts are necessary to their success.” An EU/NSF workshop on priorities for
FLOSS research identified the need both for learning from open source modes

of organization and production that could perhaps be applied to other areas

and for a concerted effort on open source in itself, for itself (Ghosh 2002). But to
be able to learn from teams that are working well, we need to have a definition
of working well.

In the following sections of the chapter, we will first discuss several

measures of project effectiveness, and then the procedure we used to obtain

data with which to operationalize these measures, followed by the details of

the analysis approach. We then present the results of this analysis and discuss

the implications of these results. We then illustrate how these measures can be

used to compare projects as part of a research study. We conclude with some

suggestions for future research.

Measuring Project Effectiveness

The most commonly cited model for information systems success is DeLone

and McLean (1992, 2002, 2003), shown in Figure 8.1. This model suggests six
interrelated measures of success: system quality, information quality, use,

user satisfaction, individual impact and organizational impact. Seddon (1997)
proposed a related model that includes system quality, information quality,

perceived usefulness, user satisfaction, and IS use. DeLone and McLean state

that their model was built by considering “a process model [that] has just three

components: the creation of a system, the use of the system, and the consequences

of this system use” (2002, p. 87). We note that the measures included in their
model focus on the use and consequences of the system and do not consider

development. The choice of measures seems to be influenced by the relative ease

of access to the use environment compared to the development environment

flOSS PROjEcT EffEcTivEnESS mEaSuRES 151

(especially true for packaged or commercial software). In the context of FLOSS
though, researchers are frequently faced with the opposite situation, in that the

development process is publicly visible and the use environment is difficult

to study or even identify. We therefore start with a discussion of measures of

success of the development process before considering the factors suggested by

DeLone and McLean.

EffEcTivEnESS Of THE PROcESS Of SySTEm DEvElOPmEnT

For FLOSS projects, development is often considered an ongoing activity, as

the project continues to release “often and early” (Raymond 1998). In other
words, a FLOSS project is characterized by a continuing process of developers

fixing bugs, adding features and releasing software. This characteristic of the

FLOSS development process suggests a number of possible indicators of project

effectiveness.

Number of Developers

First, since many FLOSS projects depend on volunteer developers, the ability of

a project to attract and retain developers on an on-going basis is important for its

success. Thus the number of developers involved in a project could be an indicator

of success, both as an input for further develop and as an indirect measure of

developer satisfaction with the project’s processes and output. The number of

developers can be measured in at least two ways. First, FLOSS development

systems such as SourceForge (a free Web-based system that provides a range of

tools to facilitate FLOSS development: http://sourceforge.net/) list developers who

are formally associated with each project, meaning that they have been granted

Figure 8.1 DeLone and mcLean’s model of information system success

Source: DeLone and McLean (1992, p. 87)

System
Quality

Information
Quality

User
Satisfaction

Use

Individual
Impact

Organizational
Impact

SuccESSful OSS PROjEcT DESign anD imPlEmEnTaTiOn15�

permission to add code (to be a “committer”) to the source code control system
(e.g., CVS). In projects hosted elsewhere, this measure could be performed by
examination of CVS logs to see which developers commit code. In both cases

though, this count would give an underestimate of developers for projects in

which code is generally contributed on a mailing list and integrated by a few

developers, suggesting the need for caution in developing this measure.

Second, examination of the mailing lists and other fora associated with

projects can reveal the number of individuals who actively participate in development

activities without being formally a developer on the project. This measure can

help gauge the level of involvement of the users as indicated by involvement

of the users in submitting bug reports and participating in the project mailing

lists, which is important because most FLOSS projects are dependent on help

from users to identify problems, post suggestions, and even provide support

for other users.

Level of activity

More important than the sheer number of developers is their contribution

to a project. Thus the level of activity of developers in submitting code and

bug reports may be useful as an indicator of project success. For example,

SourceForge computes and reports a measure of project activity based on the

activities of developers. Researchers could also examine development logs for

evidence of software being written and released.

Cycle time

Another measure related to the group activity is time between releases. In

FLOSS development, there is a strong community norm to “release early and

release often”, which implies that an active release cycle is a sign of a healthy
development process and project. For example, FreshMeat (a web-based system

that tracks releases of FLOSS: http://freshmeat.net/) provides a “vitality score”
(Stewart and Ammeter 2002) that assesses how recently a project has made
an announcement of progress on the FreshMeat site (http://freshmeat.net/faq/

view/27/). (However, there is some suggestion that these measures are being
gamed by developers anxious to see their project highly rated, again suggesting

the need for caution in interpreting the numbers.)

More detailed examination of bug-fixing and feature-request fulfillment

activities can yield useful process data indicative of the project’s status. Bug

flOSS PROjEcT EffEcTivEnESS mEaSuRES 153

reports and feature requests are typically managed through a task-management
system that records the developer and community discussion, permits labeling

of priority items and sometimes includes informal “voting mechanisms” to
allow the community to express its level of interest in a bug or new feature. The

time to close bugs (or implement requested features) can be used as a measure of
this aspect of project success.

PROjEcT TEam EffEcTivEnESS mEaSuRES

Finally, because the projects are ongoing, it seems important to consider the

impact of a project on the abilities of the project team itself and its ability to

continue or improve the development process. As Shenhar et al. (2001, p. 704)
put it: “how does the current project help prepare the organization for future

challenges?”

Employment opportunities

Some literature on the motivation of FLOSS developers suggests that developers

participate to improve their employment opportunities (e.g., Lerner and Tirole

2000). Thus, one can consider salary (Hann et al. 2002) or jobs acquired through

the involvement in a particular project as possible measures of success. For

example, Hann et al. (2002) found that higher status within the Apache project
was associated with significantly higher wages. Again, one might measure

these indicators by surveying developers. While for a single developer, these

measures are confounded with innate talent, training, luck, etc., aggregating
across many developers and across time may provide a useful project-level

measure of success.

Individual reputation

Similarly, literature also suggests that developers participating in FLOSS

projects are rewarded with reputation in the community, and that this reputation

is a sufficient reward for interaction. Kelty (2001) suggests that reputation
might be measured through an analysis of credits located in source code

(which he terms “greputation”). Alternative measures of FLOSS reputation
might include the FLOSS communities’ implementation of a “Web of Trust”
at the community site Advogato (http://www.advogato.org/trust-metric.

html) where developer status is conferred through peer review. Analyses of
this kind of measure face the difficulty of tying the earning of reputation to
the success of a particular project.

SuccESSful OSS PROjEcT DESign anD imPlEmEnTaTiOn15�

These measures might also be applied at the project level. Crowston,

Howison and Annabi (2006) suggested recognition (e.g., mention on other sites)
as a measure of project success. Similarly, another suggested measure was the

influence of the product or project’s process on other FLOSS groups and other

commercial settings.

Knowledge creation

Projects can also lead to creation of new knowledge for individuals as well as on

the group level (Arent and Nørbjerg 2000). Through their participation in a
project, individual developers may acquire new procedural and programming

skills that would benefit them on future projects. This effect could be measured
by surveying the developers for their perceived learning.

In addition, following Grant’s (1996) knowledge-based view of the firm,
we view a firm (or in this case, a project) as a structure to integrate members’
knowledge into products. In this view, the project’s rules, procedures, norms,
and existing products are a reflection of knowledge being created by the
project activities. This knowledge creation can be measured by observing and

qualitatively analyzing changes in the written rules and procedures over time

and may be reflected and transferred through the development of systems for

FLOSS project support, such as SourceForge and Savannah. Analysis of the

development of interactions and support systems closely linked to a project
might give some insight into this aspect of project success.

mEaSuRES Of THE OuTPuT Of SySTEmS DEvElOPmEnT

Two of the measures in the DeLone and McLean’s model concern the product

of the systems development process, namely systems quality and information

quality. We first consider possible additional measures of this process step

before turning to those measures.

Project completion

First, given the large number of abandoned projects (Ewusi-Mensah 1997),
simply completing a project may be a sign of success. However, many FLOSS

projects are continually in development, making it difficult to say when they
are completed. Faced with this problem, Crowston and Scozzi (2002) instead
measured success as the progress of a project from alpha to beta to stable status,

as self-reported on SourceForge.

flOSS PROjEcT EffEcTivEnESS mEaSuRES 155

Second, another commonly used measure of success is whether the project

achieved its goals. This assessment is typically made by a comparison of the

project outcomes with the formal requirements specifications. However, FLOSS

projects often do not have such specifications. Scacchi (2002b) examined the
process of “requirements engineering” in open source projects and provided a
comparison with the traditional processes (e.g., Jackson 1995; Davis 1990). He
argues that rather than a formal process, FLOSS requirements are developed

through what he terms “software informalisms”, which do not result in agreed
“requirements documentation” that could later be analyzed to see whether
the project has met its goals. Scacchi’s ethnography suggests that for FLOSS,

goals will likely come from within through a discursive process centered on
the developers. Therefore, a key measure for FLOSS may be simply developer

satisfaction with the project, which could be measured by surveying developers.

The developer community is much more clearly delineated than users,

making such a survey feasible. Indeed, there have already been several FLOSS
developer surveys (e.g., Ghosh 2002; Hertel et al. n.d.) though not on this topic
specifically. Since in many projects there is a great disparity in the contribution

of developers—a few developers contribute the bulk of the code (Mockus et
al. 2000)—it may be desirable to weight developers’ opinions in forming an
overall assessment of a project.

System and information quality

Code quality has been studied extensively in software engineering. This

literature provides many possible measures of the quality of software including

understandability, completeness, conciseness, portability, consistency,

maintainability, testability, usability, reliability, structuredness, and efficiency

(Boehm et al. 1976; Gorton and Liu 2002). To this list might be added the quality

of the system documentation. Code quality measures would seem to be particularly

applicable for studies of FLOSS, since the code is publicly available. Indeed,

a few studies have already examined this dimension. For example, Stamelos

et al. (2002) suggested that FLOSS code is generally of good quality. Mishra,
Prasad and Raghunathan (2002) offer an analytic model that suggests factors
contributing to FLOSS code quality, such as number of developers, mix of talent

level, etc. On the other hand, not many FLOSS systems include information per

se, so the dimension of information quality seems to be less applicable.

SuccESSful OSS PROjEcT DESign anD imPlEmEnTaTiOn15�

mEaSuRES Of EffEcTivEnESS fROm THE uSE Of a SySTEm

User satisfaction

User satisfaction is an often-used measure of system success. For example, it is

common to ask stakeholders if they felt a project was a success (e.g., Guinan et
al. 1998). There is some data available regarding user satisfaction with FLOSS
projects. For example, FreshMeat collects user ratings of projects. Unfortunately,

these ratings are based on a non-random sample (i.e., users who take the time
to volunteer a rating), making their representativeness suspect. Furthermore,
we have observed that the scores seem to have low variance: in a recent sample

of 59 projects, we found that scores ranged only from 7.47 to 9.07. It seems

likely that users who do not like a piece of software simply do not bother
to enter ratings. There do not seem to be any easily obtainable data on the

related measures of perceived ease of use and usefulness (Davis 1989). Opinions

expressed on project mailing lists are a potential source of qualitative data on these

facets, though again there would be questions about the representativeness of

the data.

In principle, it should be possible to survey users to collect their satisfaction

with or perceptions of the software. However, to do so properly poses a serious

methodological problem. Because most FLOSS projects are freely distributed

through multiple channels, the population of users is unknown, making it
impossible to create a true random sample of users. In this respect, FLOSS

differs greatly from information systems developed in an organizational setting

that have a clearly defined user population. The situation is also different than

for the Web, another non-traditional systems environment, because with a Web

site users are by definition the ones who visit the site, making the population
effectively self-identifying. To achieve the same effect for FLOSS, the best

solution might be to build the survey into the software, though doing so might

annoy some users.

Use

Although there is some debate about its appropriateness (DeLone and

McLean 2003; Seddon 1997), many studies employ system use as an
indication of information systems success. For software for which use

is voluntary, as is the case for most FLOSS, use seems like a potentially
relevant indicator of the project’s success. Unfortunately, actual usage data

are available for only a few FLOSS projects. For example, Netcraft conducts

flOSS PROjEcT EffEcTivEnESS mEaSuRES 157

a survey of Web server deployment (http://news.netcraft.com/archives/

webserver_survey.html), which estimates the market share of different Web
servers. Other projects that require some kind of network connection could
potentially be measured in the same way (e.g., instant messaging or peer-

to-peer file sharing clients), but this approach does not seem to be widely
applicable. Many programs do check regularly for updated versions, which
would provide a good measure of actual use, but these numbers do not seem

to be publicly available.

Popularity

Rather than measuring actual use, it may be sufficient to count the actual or

potential number of users of the software, which we label “popularity” (Stewart
and Ammeter 2002). A simple measure of popularity is the number of downloads

made of a project. These numbers are readily available from various sites. Of

course not all downloads result in use, so variance in the conversion ratio will

make downloads an unreliable indicator of use. Furthermore, because FLOSS
can be distributed through multiple outlets, online as well as offline (e.g., on

CDs), the count from any single source is likely to be quite unreliable as a
measure of total users. A particularly important channel is “distributions” such
as RedHat, SuSE or Debian. Distributions provide purchasers with pre-selected

bundles of software packaged for easy installation and are often sold on a CD-
ROM to obviate the need to download everything. Indeed, the most popular

software might be downloaded only rarely because it is already installed on

most users’ machines and stable enough to not require the download of regular

updates. Therefore, an important measure of popularity to consider is the

package’s inclusion in distributions. Crowston et al. (2006) found that developers
consider porting of a product to different systems (especially to Windows), and
requests for such ports as a measure of the success of the product. This theme

might be considered a special case of popularity.

Other sources of data reflecting on users are available. Freshmeat provides

a popularity measure for packages it tracks, though a better name might be
“interest”, as it is one step further removed from actual use. The measure is
calculated as the geometric mean of subscriptions and two counts of page

viewings of project information. Similarly, SourceForge provides information

on the number of page views of the information pages for projects it supports.

Finally, it may be informative to measure use from perspectives other than

that of an end user. In particular, the openness of FLOSS means that other

SuccESSful OSS PROjEcT DESign anD imPlEmEnTaTiOn15�

projects can build on top of it. Therefore, one measure of a project’s success

may be that many other projects use it. Package dependency information between

projects can be obtained from the package descriptions available through the
various distributions’ package management systems. Analysis of source code
could reveal the reuse of code from project to project (though identifying the

origin could be difficult).

Individual or organizational impacts

The final measures in DeLone and McLean’s (1992) model are individual and
organizational impacts for the users. Though there is considerable interest in the

economic implications of FLOSS, these measures are hard to define for regular

information systems projects and doubly hard for FLOSS projects, because of the

problems defining the intended user base and expected outcomes. Therefore,

these measures are likely to be unusable for most studies of individual FLOSS
projects.

SourceForge Data on Effectiveness

In this chapter, we illustrate the use of a portfolio of measures in two ways.

Specifically, we analyze four possible success measures, namely number of

developers, number of mailing list participants, and number of downloads

and page views for SourceForge projects in general and for a smaller sample

of projects in more detail. These measures were chosen from the list above

because they included both inputs (number of developers and users) and
outputs (number of downloads and project Web page views).

Each of the proposed measures has good face validity, in the sense that

a project that attracts developers and that many users download should be

described as a success, especially if it continues to do so over time. However,

we are interested in assessing how these measures relate to one another: do

they measure the same construct or are they measuring different aspects of

a multidimensional success construct? And most importantly, what insight

do they provide into the nature of the development processes in the different

projects?

In this section, we illustrate these measures using data about a large sample

of FLOSS projects at a single point in time. To create a sample of FLOSS projects,

we selected from projects hosted by SourceForge. As of May 2007, SourceForge

claimed nearly 150,000 FLOSS projects on a wide diversity of topics.

flOSS PROjEcT EffEcTivEnESS mEaSuRES 159

Data for the four measures adopted are tracked by SourceForge and
available for research from the SourceForge Research Data Archive (http://www.

nd.edu/~oss/) and from the FLOSSmole project (http://ossmole.sourceforge.
net; Howison et al. 2006). We obtained downloads, page views, and number
of unique users in messages from the April 2007 dump in the SourceForge

Research Data Archive (table stats_project_all). The developer count in this
table counts active developers (though the definition of active is not given), so
we obtained the total listed developer count from the April 2007 spider run in

FLOSSmole. Projects that could not be spidered by FLOSSmole were eliminated

from the sample. NULL values in the database dumps were replaced with 0s.

The full dataset included 65,070 projects.

Clearly not all of these projects were suitable for our study: many are

inactive and previous studies have suggested that many are in fact individual

projects (Krishnamurthy 2002), as is borne out by the median of one developer.
The low median number of downloads suggests that many of these projects are

not actively distributing code. Since we are primarily interested in development

practices in distributed groups, we restricted our analysis to projects that listed

more than seven developers and had any downloads as of the date of the study.

Being listed as a developer grants write access to the project’s code base, so

projects with multiple developers are ones that might be expected to experience

significant coordination issues. Having downloads is indicative of a minimal

level of development effort and having released files. Only 2,168 projects in

our dataset satisfied these two criteria. Table 8.2 shows the descriptive statistics

for the four measures. The large difference between the mean and median for

these variables indicates that they are heavily skewed. The skew can be largely
corrected for downloads and page views by applying a log transformation, as

shown by the histograms of these measures in Figure 8.2. However, the other

two variables remain heavily skewed even with such a transformation. (The
skew in developer counts is even more pronounced for the entire dataset, so it
is not a result of the sampling.)

table 8.1 Descriptive statistics for selected effectiveness measures for

the full sample of projects

Variable Mean Median Standard deviation

downloads 10,760 52 423,103

page views 75,908 628 3,564,219

developers 2.35 1 4.45

unique message authentication 1.59 1 5.36

N = 65,070

SuccESSful OSS PROjEcT DESign anD imPlEmEnTaTiOn1�0

table 8.2 Descriptive statistics for selected effectiveness measures

Variable Mean Median Standard deviation

downloads 138,818.4 5,316.5 1,225,832

log downloads 3.68 3.73 1.17

page views 868,641.2 46,131.5 8,643,556

log page views + 1 4.62 4.66 1.18

developers 15.87 12 16.02

log developers 1.12 1.08 0.22

unique message authentication 6.67 1 23.68

log unique message authentication + 1 0.54 0.30 0.40

N = 2,168

Histogram of log10 (pageviews + 1)

log10 (pageviews + 1)

Fr
eq

ue
nc

y

0 2 4 6 8

0
10

0
20

0
30

0

Histogram of log10 (downloads)

log10 (downloads)

Fr
eq

ue
nc

y

0 2 4 6 8

0
10

0
20

0
30

0

Histogram of log (developers)

log (developers)

Fr
eq

ue
nc

y

2 3 4 5 6

0
20

0
40

0
60

0
80

0
10

00
12

00

Histogram of log (msg_uniq_auth + 1)

log (msg_uniq_auth + 1)

Fr
eq

ue
nc

y

0 1 2 3 4 5 6

0
20

0
40

0
60

0
80

0
10

00

Figure 8.2 Distributions of selected variables (log transformed)

flOSS PROjEcT EffEcTivEnESS mEaSuRES 1�1

We next examine the relation among these variables. Because the data

are not normally distributed, we examined the relation using non-parametric

correlation, namely Spearman’s R (results using Kendall’s tau are similar). The
correlations are shown in Table 8.3. These correlations suggest that downloads

and page views are closely related, so both indicate a project’s overall popularity.

Interestingly, the level of participation in the messages seems to be more closely

related to popularity than to the number of developers, suggesting this measure

as a way to gauge the broader community around a project.

For comparison, Table 8.4 shows the correlations calculated for the entire

dataset. The correlation for downloads is about the same, but note that including

all projects boosts the correlation between the number of developers and

number of posters of messages, likely because of the large number of projects
scoring very low on both measures. This result underscores the importance of

developing a sample that properly captures the phenomenon of interest (in

our case, distributed software development rather than simply creation of a

SourceForge project).

table 8.3 Spearman’s r correlations among variables for active projects

Downloads Page views Developers

page views 0.75

developers 0.21 0.25

unique message authentication 0.30 0.28 0.06

N = 2,168

table 8.4 Spearman’s r correlations among variables for all projects

Downloads Page views Developers

page views 0.74

developers 0.18 0.33

unique message authentication 0.29 0.35 0.22

N = 65,070

Case Study

In this section we present an example of how these measures might be used

to compare the effectiveness of projects as a dependent variable in a study. We

compare six FLOSS projects chosen to allow for meaningful comparisons. First,

SuccESSful OSS PROjEcT DESign anD imPlEmEnTaTiOn1��

we controlled for topic. Projects within a single topic category are potential

competitors so making comparisons of outcomes such as downloads between
these projects valid. Second, to minimize unwanted variance, we chose projects

that are roughly similar in age and status (production/stable). Projects at this
stage have relatively developed membership and sufficient team history, yet

the software code still has room for improvement, which enables us to observe

rich team interaction processes. On the other hand, we wanted to have projects

at different levels of complexity to provide for variability. Accordingly we

picked three projects that develop enterprise resource planning (ERP) systems
(Compiere, WebERP, and Apache OFBiz) and three teams that develop Instant
Messenger (IM) clients (Gaim, aMSN, and Fire). ERP projects are more complex
than IM projects since they have to address many external constraints such as

accounting rules and legal reporting requirements.

The array of measures presented in Figure 8.3 and Figure 8.4 use data collected

by the FLOSSmole project (Howison et al. 2006) from the project establishment
in SourceForge until around March 2006. Note that we have taken advantage of
the rich data available to show the evolution of these measures over time, rather

than comparing all time measures. This comparison suggests that the most

effective IM project is Gaim, followed by aMSN, then Fire, and the most effective

ERP project is Compiere followed by OFBiz then WebERP. Further study can

then address the question of what practices adopted by these different projects

seem to be related to these differences in effectiveness. For example, what (if

anything) are Gaim developers doing that makes the project more attractive to
other developers or the resulting program more attractive to users?

Figure 8.3 Comparison of effectiveness measures for Im projects

flOSS PROjEcT EffEcTivEnESS mEaSuRES 163

Conclusions

This chapter makes a contribution to the developing body of empirical
research on FLOSS by identifying a collection of success measures that might

be applied to FLOSS. We have collected data on four possible measures for a

set of SourceForge projects and shown the relations among these measures.

The four measures applied in this chapter all have face validity as indicators.

We emphasize again that we do not view any single measure as the final

word on success. The moderate correlation among these measures indicates

a degree of convergent validity, but as the measures draw on different aspects

of the development process, they offer different perspectives on the process.

Including multiple measures in a portfolio should provide a better assessment

of the effectiveness of each project.

Most of the constructs considered in this chapter can be represented as

cumulative variables, as in the large sample study above, or as time-series, as

in our case study above. Even though the required analyses are more complex,

there are clear reasons to prefer the time-series representation over the

cumulative representation, especially as analysis moves to understanding the

sources of project effectiveness. The underlying logic here is that the practices

and structures reflected in the effectiveness measures may need to vary over

time if projects are to successfully meet the challenges of different phases of the

project’s development (e.g., Rajlich and B.K.H. 2000). For example, initially it

Figure 8.4 Comparison of effectiveness measures for ErP projects

SuccESSful OSS PROjEcT DESign anD imPlEmEnTaTiOn1��

may be important to have a quite small group of developers, who can lay down

a coordinated and consistently designed artifact, perhaps with appropriate

modularity. Later, that small-team design may be better able to support a larger

and rapidly growing group of developers (Senyard and Michlmayr 2004; Parnas

et al. 1981). If such processes are at play, different measures may be appropriate
for projects at different stages of growth. Furthermore there may be multiple

routes to eventual success, and clustering time-series is a useful approach to

understanding such paths (Stewart et al. 2006).

Time-series also offer the possibility of identifying periods of particular

interest in the life of a project. For example, one can identify transition points

through techniques such as interrupted time-series experiments. These

techniques make it possible to identify projects that appeared to be performing
well (on a combination of measures) but then stall, or projects that appeared to
have stalled but manage to re-start and return to effective operation. The path

of aMSN’s developer count in Figure 8.4 is a suggestive example, with two

seeming transition points. Such transition points could highlight periods for

in-depth analysis which may cast detailed light on project risks and effective
coping strategies.

Having identified particular effective projects, our future work includes
more detailed analysis of the projects. We plan to employ a theoretical sampling

strategy to choose a few FLOSS development teams to study in depth. By

limiting the number of projects, we will be able to use more labor-intensive

data analysis approaches to shed more light on the practices of effective FLOSS

teams.

References

Arent, J. and Nørbjerg, J. (2000) Software Process Improvement as Organizational
Knowledge Creation: A Multiple Case Analysis. Presented at Proceedings

of the 33rd Hawaii International Conference on System Sciences (HICSS-33,

January 4–7), Wailea, Maui, HI.
Boehm, B.W., Brown, J.R. and Lipow, M. (1976) Quantitative Evaluation of

Software Quality. In Proceedings of the 2nd International Conference on Software

Engineering, October 13–15. San Francisco, CA: 592–605.

Crowston, K., Howison, J. and Annabi, H. (2006) Information Systems Success
in Free and Open Source Software Development: Theory and Measures,

Software Process—Improvement and Practice, 11: 123–48.

flOSS PROjEcT EffEcTivEnESS mEaSuRES 1�5

Crowston, K. and Scozzi, B. (2002) Open Source Software Projects as Virtual
Organizations: Competency Rallying for Software Development, IEE

Proceedings Software, 149: 3–17.

Davis, F.D. (1989) Perceived Usefulness, Perceived Ease of Use and User
Acceptance of Information Technology, MIS Quarterly, 13: 319–40.

Davis, A.M. (1990) Software Requirements Analysis and Specification. Englewood

Cliffs, NJ: Prentice-Hall.
DeLone, W.H. and McLean, E.R. (1992) Information Systems Success: The Quest

for the Dependent Variable, Information Systems Research, 3: 60–95.

DeLone, W.H. and McLean, E.R. (2002) Information Systems Success Revisited.
Presented at Proceedings of the 35th Hawaii International Conference on

System Sciences (HICSS-35, January 7–10), Waikoloa, Hawaii.
DeLone, W.H. and McLean, E.R. (2003) The DeLone and McLean Model of

Information Systems Success: a Ten-year Update, J. Manage. Inform. Syst.,

19: 9–30.

Ewusi-Mensah, K. (1997) Critical Issues in Abandoned Information Systems
Development Projects, Communication of the ACM, 40: 74–80.

Ghosh, R.A. (2002) Free/Libre and Open Source Software: Survey and Study.
Report of the FLOSS Workshop on Advancing the Research Agenda on
Free/Open Source Software, online document. http://www.flossproject.org/

report/FLOSS_Final5all.pdf. Last accessed on October 19 2010.
Gorton, I. and Liu, A. (2002) Software Component Quality Assessment in

Practice: Successes and Practical Impediments. In Proceedings of the 24th

International Conference on Software Engineering (ICSE). May. Orlando, FL:

Association for Computing Machinery (ACM) Press, 555–8.
Grant, R.M. (1996) Toward a Knowledge-based Theory of the Firm, Strategic

Management Journal, 17: 109–22.

Guinan, P.J., Cooprider, J.G. and Faraj, S. (1998) Enabling Software Development
Team Performance During Requirements Definition: A Behavioral Versus

Technical Approach, Inf. Syst. Res., 9: 101–25.

Hann, I.-H., Roberts, J., Slaughter, S. and Fielding, R. (2002) Economic
Incentives for Participating in Open Source Software Projects, In Proceedings

of the Twenty-Third International Conference on Information Systems, Seattle WA:

365–72.

Hertel, G., Niedner, S. and Herrmann, S. (n.d.) Motivation of Software Developers
in Open Source Projects: An Internet-based Survey of Contributors to the

Linux Kernel. Kiel, Germany: University of Kiel.

Howison, J. Conklin, M. and Crowston, K. (2006) FLOSSmole: A Collaborative
Repository for FLOSS Research Data and Analyses, International Journal of

Information Technology and Web Engineering, 1: 17–26.

SuccESSful OSS PROjEcT DESign anD imPlEmEnTaTiOn1��

Jackson, M. (1995) Software Requirements and Specifications: Practice,
Principles, and Prejudices. Boston, MA: Addison-Wesley.

Kelty, C. (2001) Free Software/Free Science, First Monday, 6(12). http://
firstmonday.org/issues/issue6_12/kelty/index.html. Last accessed October
19 2010.

Krishnamurthy, S. (2002). Cave or Community? An Empirical Examination of
100 Mature Open Source Projects. First Monday, 7(6). http://131.193.153.231/
www/issues/issue7_6/krishnamurthy/index.html. Last accessed on October
19 2010.

Lerner, J. and Tirole, J. (2002). The Scope of Open Source Licensing, working
papers, http://idei.fr/doc/wp/2003/scope_open_source.pdf . Last accessed on
October 19 2010.

Mishra, B., Prasad, A. and Raghunathan, S. (2002) Quality and Profits Under
Open Source Versus Closed Source. In Proceedings of the Twenty-Third

International Conference on Information Systems: December, Barcelona, Spain.

Mockus, A., Fielding, R.T. and Herbsleb, J.D. (2000) A Case Study of Open
Source Software Development: The Apache Server. Presented at Proceedings

of the International Conference on Software Engineering (ICSE’2000). June,
Limerick, Ireland.

Parnas, D.L., Clements, P.C. and Weiss, D.M. (1981) The Modular Structure of
Complex Systems, IEEE Transactions on Software Engineering, 11: 259–66.

Rajlich, V.T. and B.K.H. (2000) A Staged Model for the Software Life Cycle, IEEE

Computer, 33: 66–71.

Raymond, E.S. (1998) The Cathedral and the Bazaar, First Monday, 3,3.

http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/. Last
accessed October 19 2010.

Scacchi, W. (2002a) Software Development Practices in Open Software
Development Communities: A Comparative Case Study. Position paper for

the 1st workshop on Open Source Software Engineering, Toronto, Ontario.
http://opensource.ucc.ie/icse2001/scacchi.pdf. Last accessed October 19

2010.

Scacchi, W. (2002b) Understanding the Requirements for Developing Open
Source Software Systems, IEE Proceedings Software, 149: 24–39.

Seddon, P.B. (1997) A Respecification and Extension of the DeLone and McLean
Model of IS Success, Information Systems Research, 8: 240–53.

Senyard A. and Michlmayr, M. (2004) How to Have a Successful Free Software
Project. In Proceedings of the 11th Asia-Pacific Software Engineering Conference

(APSEC 2004), 30 November–3 December, Busan Korea: 84–91.

Shenhar, A.J., Dvir, D., Levy, O. and Maltz, A.C. (2001) Project Success: A
Multidimensional Strategic Concept, Long Range Planning, 34: 699–725.

flOSS PROjEcT EffEcTivEnESS mEaSuRES 1�7

Stamelos, I., Angelis, L. Oikonomou, A. and Bleris, G.L. (2002) Code Quality
Analysis in Open Source Software Development, Information Systems Journal,

12: 43–60.

Stewart, K.J. and Ammeter, T. (2002) An Exploratory Study of Factors Influencing
the Level of Vitality and Popularity of Open Source Projects. In L. Applegate,

R.Galliers, and J.I. DeGross (eds), Proceedings of the Twenty-Third International

Conference on Information Systems. Barcelona, Spain: 853–7.

Stewart, K.J., Darcy, D.P. and Daniel, S. (2006) Opportunities and Challenges
Applying Functional Data Analysis to the Study of Open Source Software,

Statistical Science, 21(2): 167–78.

