
No Science Software is an Island: Collaborative Software
Development Needs in Geosciences

Yolanda Gil
Information Sciences Institute

University of Southern California
gil@isi.edu

Eunyoung Moon
School of Information

University of Texas at Austin
eymoon@utexas.edu

James Howison
School of Information

University of Texas at Austin
jhowison@ischool.utexas.edu

ABSTRACT
Professional software practices increasingly involve
software sharing and collaborative development of
software. As science becomes an increasingly collaborative
enterprise, is there any increasing need for collaborative
software practices? We collected data from geoscientists in
early career stages with diverse research areas. Although
they had varying software development skills, they
consistently emphasized the need for improved software
sharing and reuse. Moreover they wish to learn more about
modern software sharing, open source communities, and
collaborative software development practices as they
become more interested in various aspects of software
stewardship. We briefly examine the current educational
resources that early career scientists may have encountered
and note that very few address the issues raised by our
respondents. Accordingly, we argue that these aspects of
work in today’s science ought to be incorporated in
scientific method and education curricula for scientists. We
conclude with preliminary strategies for addressing this.

Author Keywords
Software sharing, software reuse, scientific software.

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User
Interfaces - Interaction styles

General Terms
Human Factors; Design; Measurement.

INTRODUCTION
 “No man is an island,
Entire of itself,
Every man is a piece of the continent,
A part of the main…”

 – John Donne, Meditation XVII, (1624)

Software development is increasingly a collaborative
enterprise. In science, software sharing and reuse is crucial
for effective and efficient use of research funding and to
reach goals of the scientific method, including correctness,
transparency and the ability replicate and extend the work
of others (Katz et al., 2014).

Existing research has found, however, that scientists
developing software have tended to do so in disconnected
groups, if not individually (Boisvert and Tang, 2001;
Howison and Herbsleb, 2013). In this manner scientists
may simply be following incentives to earn individual
reputation or at least avoid the overhead of collaboration.

Yet an alternative hypothesis is that scientists are aware of
the value of collaboration and wish to work more
collaboratively, but are held back by a lack of focus on
these topics in their education, particularly in their software
education.

The question is important for knowing which policy
responses to emphasize: providing improved educational
materials for collaboration is substantially easier and more
immediately actionable than first seeking to address
questions of incentives.

SUBJECTS
In order to investigate this, we approached geoscientists
regarding their current software practices and areas where
they would want to learn more about software. We
approached 40 individuals who had participated in
workshops and were early career researchers. We were
seeking a population that was more likely to have been
exposed to programming, and that might seek to learn more
about software through their careers given the trends in
science. We received 27 responses.

We solicited a letter from each individual, asking them to
express their needs in terms of software skills. Each was
asked to include a paragraph about their research interests,
followed by one or more paragraphs on their current
practices in software and topics that they would like to learn
more about. The letters were otherwise not required to be
structured; instead they were free form responses. We did
not prompt them to respond to specific topics, instead we
let them raise the topics that naturally came to mind when
thinking about software and the issues they confront in that
area.

Submitted to WSSSPE 2.0.

We analyzed the diversity of the respondents, in terms of
their research areas, the positions they hold, and their home
institutions. We analyzed their research areas based on the
research topics mentioned in the paragraphs about their
research interests. The signature included in the letters
mentioned the position held by the respondents and their
home institution.

We annotated the letters that we received in two different
ways: first we assessed the software skills of the
respondents, then we assessed the topical areas the
participants emphasized. We reasoned that those with
substantially greater software skills would emphasize
different aspects than those without.

To assess the software skills of the respondents, the letters
were analyzed in terms of the language used to describe
their current software practices. Based on this analysis, the
annotators classified respondents into three broad categories
according to their programming skills and familiarity with
computer software practices:

• Non-programmers: Scientists that have very minimal
knowledge about programming and software practices.

• Developers: Scientists that develop software, and do
some form of software publication and sharing.

• Advanced developers: Scientists that have advanced
programming skills and have sophisticated knowledge
of software sharing and open source practices. Many
release their software in open source repositories.

The second annotation concerned the software issues
mentioned by the respondents. The letters were analyzed in
terms of the language used to describe topics in software
development and stewardship that the respondents felt
would be beneficial for them to learn about. We created a
set of topics mentioned in the letters, taking into account
that different language was used to describe a given topic.
For example, a letter mentioned “with an open source
repository and community-contributed code” and was
tallied as the topic of “Building communities around
models/codes.”

FINDINGS

Diversity of Respondent Population
Figure 1 shows a “wordle diagram”1 that illustrates the
diversity of geosciences topics taken from the short
descriptions of research interests in their letters. The topics
cover the major areas associated with geosciences research:
Earth, Ocean, Atmospheric, and Arctic sciences.

1 http://www.wordle.net

The respondents hold positions usually associated with
early career researchers including assistant professor (9),
research assistant professor (3), associate professor (2),
post-doc (4), PhD student (4), and other junior positions (5).
13 of them are women.

Their home institutions included academic departments
(22), research institutions (3), and government
organizations (2). They cover 16 states: AL (1), AK (1),
AZ (1), CA (5), CO (1), CT (1), DC (1), HI (1), MA (1), MI
(1), NY (2), OH (1), OR (2), SC (2), TX (2), UT (1), and
WI (3).

Software Sophistication of the Respondents
The respondents had varying levels of sophistication in
terms of writing and using software, using open source
software, and contributing to open source software
communities. 3 were non-programmers, 18 developed
software for their work, and 7 had advanced software
development skills. The distribution is shown in Figure 2.

Software Needs
Table 1 summarizes the topics mentioned in the responses
referring to needs in software development and open source
practices. We grouped the topics into five major themes: 1)
preparing software for sharing, 2) describing software, 3)
open source software practices, 4) software reuse, and 5)
science practices and software. We show the total number
of respondents that mentioned a topic, as well as a
breakdown based on their software sophistication.

Note that given our approach to data collection, a
respondent would mention their 3-5 top-rated topics and
might not go on to mention other topics even if they would
be important to them. In other words, not mentioning a

Figure 1. An illustration of the geosciences research topics
represented by the respondents.

Figure 2. Software skill level of the respondents.

 topic in a letter was not an indication that the respondent
did not consider it important.

The results in Table 1 show the annotations of our primary
content analysis. To confirm that what we were seeing was
not overly influenced by any single person’s perspective we
had a second researcher read the letters and apply the same
categories. The results were not identical but confirmed the
overall picture reported in this paper.

The results show that traditional software education
concerns are relevant to early career scientists: particularly
among non-expert developers there was considerable
interest in learning to develop software more efficiently.

Similarly, questions of incentives that may undermine
collaborative software development were not absent in
these results: mechanisms for citation and credit for the
development of software were mentioned often.
Respondents mentioned that it is hard to justify the
investment required to learn software skills and to develop
software given that there are no clear mechanisms to benefit

their careers. For early career people, this is particularly
important. Since they tend to have more software
development skills, when work in larger collaborations they
tend to be given software tasks while more senior
researchers that lack programming skills might focus more
on doing the science.

Nonetheless, it is striking that the majority of the software
issues raised are concerned with collaborative software
development and sharing, rather than individual software
development skills. There was a strong interest in
improving software documentation so it can be easily
understood by others and reused. Another highly desirable
set of skills concerned improving software sharing. Many
wanted to share their software, but they did not know how
to do that. The development of communities around
software codes was another important issue. Many of the
respondents have released their software in a software
sharing site (e.g., GitHub or similar), and had a community
of contributors which in many cases was causing them
more work than they would like. They were looking to

Issues%% %%Mentions%%%% %%%%Breakdown%%%%%
Preparing))Software)for)Sharing)

!
NP# DEV# ADV#

Writing!software!that!is!easier!to!integrate! 1# ## ## 1#
Making!code!more!portable! 2# ## 2# ##
Documenting!software!for!distribution! 10% ## 6% 4#
Improving!software!sharing! 12% 1# 9% 2#

! ! # # #Describing))Software)
! # # #Comparing!different!modeling!codes! 3# 1# 1# 1#

Linking!codes!as!workflows! 2# ## 1# 1#
Making!software!accessible!to!non=programmers! 6% ## 6# ##

! ! # # #Open)Source)Software)Practices)
! # # #Availability!of!archives!to!distribute!software! 7% ## 5# 2#

Open!source!software!practices! 6% ## 2# 4#
Developing!communities!around!models/codes! 8% ## 7# 1#
Managing!software!updates! 8% ## 5# 3#

! ! # # #Software)Reuse)
! # # #Reusing!software!for!data!preparation! 7% ## 5# 2#

Reusing!visualization!codes! 3% ## 3# ##
Reusing!codes!from!others/!reusing!legacy!codes! 12% 1# 7# 4#

! ! # # #Science)Practices)and)Software)
! # # #Making!work!reproducible!by!releasing!software!used! 1# ## ## 1#

Interpreting!data!using!software!as!provenance! 4# 2# 1# 1#
Being!more!efficient!at!developing!software! 11% 1# 10% ##
Mechanisms!for!credit!and!citation,!for!justification!of!effort! 9% ## 9% ##
Facilitating!training!of!new!researchers! 6% ## 4# 2#

Table 1. The software topics that were highlighted in the 27 responses, shown in the first column and grouped into 5 major themes.
The second column shows the number of respondents who mentioned that topic. The mentions are broken down based on the
respondent: non-programmer (NP), developer (DEV), advanced developer (ADV). Darker blue indicates 10 or more mentions, lighter
blue 5-9 mentions, and light grey 1-4 mentions.

learn how to manage this contributor community. They
were also interested in best practices in managing software
updates when there is already a community that has adopted
their software.

Another need that was mentioned very often was helping
non-programmers to reuse software. Non-programmers
included not only colleagues but also students. Students not
only have to come up to speed in the particular science they
are studying, but also on the software. Having mechanisms
that allow others to learn quickly how to use scientific
software was considered important.

DISCUSSION
The results show that early career scientists are concerned
with incentives and do want to improve their individual
programming skills. Yet there was widespread interest in a
acquiring skills relating to collaborative software
development, including matters of attribution and credit.

We think it reasonable to conclude that while incentives are
of concern, early career scientists are not letting uncertainty
about those incentives stop them from seeking to share,
reuse and collaboratively develop software.

How then might these early career scientists learn about the
topics they indicate interest in? When and where in their
careers might they encounter this material? While a
systematic survey of the educational experiences of this
group might shed more direct light on these questions, as a
preliminary measure we examined three potential sources:
the scientific computing curriculum at a major research
university, tutorials at Supercomputing and the curriculum
of Software Carpentry, a leading edge software education
for early career scientists.

We briefly examined the scientific computing curriculum at
a major research university. As expected the emphasis of
the scientific computing curriculum is heavily technical,
focusing on programming languages and mathematical
techniques (e.g., vector optimization, profiling), assistance
in using particular hardware, and courses focused on
specific scientific domains. There were no course titles that
indicated training in collaborative development,
participation in open source projects, or issues arising in re-
using the code of others.

We then examined the tutorials offered at the
Supercomputing conference in 20 2013, and 2012
(excluding the WSSSPE1 workshop at SC 2014). The vast
majority of these are education in using specific tools or
optimization; one 2012 course mentions “co-design” but
none focus on the collaboration issues raised by our early-
career respondents.

Finally, we examined the curriculum of Software
Carpentry, considered the leading edge program for
introducing science students to computing best practices.
The primary focus is on individual efficiency and

introducing specific tools, but this curriculum definitely
addresses collaboration: they teaching collaborative source
code management, specifically addresses “Open Science”
and the open source licenses and discuss options for hosting
code (such as Github and BitBucket). In addition the
recommended reading include books on managing open
source software projects.

Although our assessment is very preliminary it highlights
that there is a very limited focus on issues of collaborative
software development, reuse and software community
management available within the standard educational
experiences of early-career scientists.

CONCLUSION
While incentives for improved software practices are in the
minds of early career scientists, there is a clear and
surprising interest in improving skills in software reuse and
collaboration shown in our study. Thus it seems essential to
include units on these topics within computational science
education generally. Indeed since software is increasingly
how much science is undertaken, we should argue that
collaboration and software reuse is an important part of
scientific methods and work to encourage its inclusion in
mainline scientific education. One way forward would be to
work with the Science of Team Science initiative driven by
NIH (Falk-Krzesinski et al., 2010) and ensure that software
work is included in curriculum initiatives coming out of
that community.

REFERENCES
Boisvert, R.F., Tang, P.T.P. (Eds.), 2001. The Architecture

of Scientific Software.
Falk-Krzesinski, H.J., Borner, K., Contractor, N.,

Cummings, J., Fiore, S.M., Hall, K.L., Keyton, J.,
Spring, B., Stokols, D., Trochim, W., Uzzi, B.,
2010. Advancing the Science of Team Science.
Clin. Transl. Sci. 3, 263–266. doi:10.1111/j.1752-
8062.2010.00223.x

Howison, J., Herbsleb, J.D., 2013. Incentives and
integration in scientific software production, in:
Proceedings of the ACM Conference on Computer
Supported Cooperative Work. San Antonio, TX,
pp. 459–470. doi:10.1145/2441776.2441828

Katz, D.S., Choi, S.-C.T., Lapp, H., Maheshwari, K.,
Löffler, F., Turk, M., Hanwell, M.D., Wilkins-
Diehr, N., Hetherington, J., Howison, J., Swenson,
S., Allen, G., Elster, A.C., Berriman, G.B.,
Venters, C.C., 2014. Summary of the First
Workshop on Sustainable Software for Science:
Practice and Experiences (WSSSPE1). CoRR
abs/1404.7414.

Wilson, G., 2014. Software Carpentry: lessons learned.
F1000Research. doi:10.12688/f1000research.3-
62.v1

