
Alone Together:
A socio-technical theory of motivation, coordination
and collaboration technologies in organizing for free

and open source software development

James Howison

Abstract

This dissertation presents evidence that the production of Free and Open
Source Software (FLOSS) is far more alone than together; it is far more often
individual work done “in company” than it is teamwork. When tasks appear
too large for an individual they are more likely to be deferred until they are
easier rather than be undertaken through teamwork. This way of organizing is
successful because it fits with the motivations of the participants, the nature of
software development as a task, and the key technologies of FLOSS collabora-
tion. The empirical findings are important because they ground and motivate
a theory that enables a systematic approach to understanding the implications
of FLOSS development as a model for adaptation and the future of work. The
dissertation presents a process of discovery (participant observation), replica-
tion (a systematic study of project archives), and generalization to theory (a
model of the rational choices of developers and an analysis of the flexibility of
software as a task). The dissertation concludes by enumerating the conditions
under which this theory of organizing is likely to be successful, such as non-
revokable and rewindable work with incremental incentives. These are used as
a framework to analyze efforts to adapt the FLOSS model of organizing for
self-organizing, virtual teams in other domains of work.1

1Future developments of this dissertation, errata and discussion will be available at http://
james.howison.name/pubs/dissertation.html

http://james.howison.name/pubs/dissertation.html
http://james.howison.name/pubs/dissertation.html

ALONE TOGETHER:A SOCIO-TECHNICAL THEORY
OF MOTIVATION, COORDINATION AND

COLLABORATION TECHNOLOGIES IN ORGANIZING
FOR FREE AND OPEN SOURCE SOFTWARE

DEVELOPMENT

By

James Howison
B. Economics (Social Sciences) (Hons) University of Sydney 1998

DISSERTATION

Submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Information Science and Technology

in the Graduate School of Syracuse University

May 2009

Approved
Professor Kevin Crowston

Date

Copyright c© 2009 James Howison, Some Rights Reserved.

REPLACE WITH COMMITTEE APPROVAL PAGE

Contents

Contents v

I Introduction 1

1 Background and Research Questions 2

2 Literature Review I 15

II Research 29

3 Discovery: BibDesk Participant Observation 30

4 Literature Review II 63

5 Replication: Fire & Gaim Archive Study 81

6 Literature Review III 142

7 Formalization: An Explanatory Model 151

III Conclusions 195

8 Discussion 196

9 Conclusion 221

Bibliography And Appendices 229

Details of Illustrative Tasks 230

Bibliography 236

Biographical Data 248

v

Part I

Introduction

1

Chapter 1

Background and Research

Questions

What if you had to organize to not only do something great, but also to attract the

very people you need to do those great things, without any money at all? How might

that organizing—that way of working—look?

A great deal of literature has studied the more common case of organization in

which the future availability of resources is assumed. Teams are studied working, but

only after their members are assigned; partnerships between businesses are studied

after their members are engaged. Typically this assumption rests on the knowledge

that participants are paid for their involvement and, quid pro quo, they offer their

working time as a resource to be shaped by an active management seeking to improve

the overall goal of organizational efficiency.

Increasingly, however, the future of work seems unlikely to look like this. Simply

offering money and then telling people what to do isn’t always enough to attract the

best and brightest, and even if they are attracted it might not be enough to hold onto

them or to ensure that they do their best work. Skilled workers, especially in-demand

knowledge workers, might be better understood and managed if they were perceived

2

CHAPTER 1. BACKGROUND AND RESEARCH QUESTIONS 3

as acting like volunteers (e.g. Handy, 1988; Malone, 2004; Cook, 2008; Barnard et al.,

1968; Drucker, 2002).

In some ways it has always been understood that people working together—

seemingly without coercion—can do interesting, productive things, but these have

been the exception rather than the rule, and have tended to be small-scale and small

impact (like managing a local sporting league). Truly hard and important achieve-

ments have been accomplished through organizational models with up-front financial

investment, strategic planning and just the right amount of incentivized coercion, to

ensure both effective and efficient collaboration.

Recently, however, new forms of collaboration have emerged to great acclaim.

Phenomena such as free and open source software development and Wikipedia suggest

that new technologies are associated with new forms of organizing. Whether these

are called “massive virtual collaboration” (Crowston and Fagnot, 2008), “private-

collective innovation” (von Hippel and von Krogh, 2003), “wikinomics” (Tapscott

and Williams, 2006) or even “crowd-sourcing” (Surowiecki, 2005; Howe, 2006), they

suggest that there is something strikingly and importantly novel occurring.

Yet the expectation that truly important things are not done by volunteers in

their spare time is so persistent and pervasive, research ought to remain skeptical.

This is perhaps doubly-true when claims are made that revolutionary technology lies

at the bottom of such transcendence. The rhetorical record is rife with overblown

claims about the revolutionary potential of new technologies and attendant claims

of its universal and easy application (e.g. Marvin, 1988). Detailed studies reveal

the relationship between technologies, organization and effective collaboration to be

always much more complex, contingent and suspect (Orlikowski and Barley, 2002;

Barley, 1986; Trist and Bamforth, 1951; Orlikowski, 1992).

Nonetheless it is clear that something very interesting is happening around tech-

nology supported open collaboration. Artifacts like the Linux operating system and

CHAPTER 1. BACKGROUND AND RESEARCH QUESTIONS 4

Wikipedia are threatening long established ways of doing great things in the domains

of software and documentation of knowledge. They have emerged from voluntary,

non-coerced creative activity and have developed distinctive technologies to support

their creation and dissemination. They are worthy of research both for their own sake

and for the sake of lessons that might be learnt from them, both for organizational

theory and practical application elsewhere.

This dissertation explores these questions and this opportunity and builds an

empirically grounded theory of organization in Free (Libre) and Open Source Software

(FLOSS1) projects2.

1.1 Research Questions

The purpose of this dissertation is to understand why the FLOSS model of organizing

is successful and thereby provide a framework to discuss what can be adapted for

1The software produced by these projects are generally available without charge (“free as in

beer”). Some (though not all) open source software is also “free software”, meaning that derivative

works must be made available under the same license terms and therefore can never be made

proprietary so they are “free as in speech” thus libre.. There are therefore two similar but distinct

communities, the “open source” and the “free software” community. We have chosen to use the

acronym FLOSS rather than OSS or even FOSS, to accommodate this range of meanings and

respect the freedom (libre) connotation of free. Nevertheless, we have joined the two approaches

for this research because their development practices are indistinguishable for the purposes of this

dissertation.
2The organizational status of, or appropriate analogy for, FLOSS development projects is an

interesting research question in its own right. Are they (or are they more like) teams, communities,

organizations or groups? Some scholars use team to refer only to the core developers, and community

to also include less active participants. Terminology is especially problematic because the notion

and extent of the “teamness” of FLOSS production is central to this dissertation. Therefore we have

chosen to use the term “project” because it is the term used by participants themselves and leaves

the question for empirical data.

CHAPTER 1. BACKGROUND AND RESEARCH QUESTIONS 5

other organizational environments. To structure this inquiry, there are three specific

research questions, known throughout this dissertation as RQ1, RQ2 and RQ3.

1. How is successful FLOSS production organized?

2. How does this organization interact with the motivations of developers?

3. What are the implications for the adaptation of the FLOSS model of organiza-

tion in other environments?

This introductory chapter now turns to a more detailed introduction of the theo-

retical and empirical justification for the proposed research, developing the research

problem and describing the intended audiences for the work. The chapter then briefly

examines ways to approach research on FLOSS development, making a practical and

ethical argument for the methods used throughout this dissertation. The chapter

ends with a short summary of the structure of the remainder of the dissertation.

1.2 Research Justification

This dissertation is important and timely because it asks and answers important

questions about an important, surprising and interesting phenomenon. If we are

to understand FLOSS development well enough to envision the future of work and

perhaps adapt these understandings to the problem of collective action it is vital to

achieve an answer which integrates two aspects: the motivation of participants and

the organization of production.

The software produced by FLOSS projects is a key infra-structural component

of the information systems of organizations, as well as the entire internet where the

Apache webserver and the BIND domain name software are the most used among their

respective competitors. At its best, FLOSS is reliable and standards compliant and it

is certainly widely available and relatively cheap. For the same reasons it is useful it

is also a threat to the business models of proprietary software companies, in as much

CHAPTER 1. BACKGROUND AND RESEARCH QUESTIONS 6

as they rely on selling licenses and their near monopoly of integration and support

services for their products. FLOSS is also having global economic effects because it

allows enterprises in developing countries to obtain solid infrastructure inexpensively.

This frees their limited resources to concentrate on competing to produce higher

value-added products and services.

The artifacts these projects are creating are impressive but equally impressive,

from a research point of view, is that they are able to succeed in circumstances that

the management literature has found to be challenging. These circumstances include

working at a distance over computer media, working without formal leadership and

drawing together participants, including volunteers, with diverse motivations and

adapting to the changing mix of available participants, time and context (Lipnack

and Stamps, 1997; Powell et al., 2004; Olson et al., 2002; Scheier, 1977). Somehow

these projects are able to find enough order in this potential chaos; to invent or adapt

ways of working that keep the project successful.

Of course any software package is limited in usefulness without support. With

proprietary software that means interacting with the vendor, their support partners

and, perhaps, a user-community (such as Microsoft’s developer network). This inter-

face is already complex enough to have interested Information Systems researchers

for many decades. The introduction of the FLOSS context adds significant com-

plexity. Figure 1.1 attempts to sketch this, showing the changing boundaries and

the increasingly close relationship between users and the development team. FLOSS

communities are not like traditional software venders and are sometimes defensive

and ornery (Crowston and Howison, 2006). When, however, they are understood

they can be very innovative and supportive. Adding to the complexity, software de-

velopment companies that have employees with strong FLOSS experience can find

those employees to be highly mobile, backed by their standing as individuals in the

FLOSS community. Therefore understanding how to approach and to work with a

CHAPTER 1. BACKGROUND AND RESEARCH QUESTIONS 7

Figure 1.1: Shifts in the macro environment of software production

Organization
(inc Management, Finance etc)

Dev
Team

Customers
(Users)

Marketing

Support

Dev
Team

Users

Dev
Team

Lead
Users

Customers
(Users)

Small
(or early stage)

FLOSS
Projects

Large (or later stage)
FLOSS
Projects

Distributions
(eg RedHat,

Debian)

Traditional
Software

Firms

FLOSS community is increasingly a strategic imperative for any organization which

develops or supports software (Crowston and Howison, 2006).

FLOSS and its development also speaks to a long-standing theoretical question in

Organization Science: the origin of interdependencies in work. These have long been

held as a primary determinant of the appropriate coordination mechanism and thus

organizational structure (e.g. March and Simon, 1958; Thompson, 1967; Mintzberg,

1979; Malone and Crowston, 1994). Recent work in longitudinal studies of naturally

occurring work has questioned the “purely structural” nature of task interdependency,

arguing that interdependency is an emergent property of collaboration (e.g. Wage-

CHAPTER 1. BACKGROUND AND RESEARCH QUESTIONS 8

man, 1995; Wageman and Gordon, 2005; Faraj and Xiao, 2006). The work in this

dissertation speaks directly to this issue, adding a focus on the resource environment

and motivations of participants as a determinant of interdependency.

1.3 Scope

Up to this point we have discussed FLOSS and its development as though it were a

single phenomenon, a common but mistaken position (Nakakoji and Yamamoto, 2001;

Crowston and Howison, 2006; Krishnamurthy, 2002). The label itself refers only to

the licenses under which software code is released, not to the manner in which the

projects obtain their resources or build software. Falling under the single label of

FLOSS are projects as diverse as a five line script written and released by a single

author to publicly listed companies with thousands of employees, such as RedHat.

The license is not unimportant, indeed in the Discussion (Chapter 8) its stipulations

are an important condition for the model of organizing described in this dissertation,

yet the license is not sufficient to bound a phenomenon for useful research.

The understanding of FLOSS development is complicated by the many hybrids

it forms with other types of organization. For example some important projects,

like the Firefox browser and OpenOffice, began life as for-profit, co-located software

development and retain some of that structure in their organization. Many projects

have substantial numbers of employees who are paid, directly or in-directly by busi-

nesses for their work on the project. Such employees are often physically co-located.

The impact of such aspects is weakly understood, yet it is clear that they are hy-

brids between relatively well-studied forms of organization, like traditional for-profit

production firms, and “something else”, something novel.

The research, findings and theory outlined in this dissertation focus on that “some-

thing else”. The cases chosen throughout the dissertation are cases of “community-

CHAPTER 1. BACKGROUND AND RESEARCH QUESTIONS 9

based” FLOSS development. By this we mean that they are projects that began “in

the community”; they are not associated with any other type of institution, such as

a firm or a foundation. Such projects are all exclusively volunteer: no-one is paid di-

rectly for their involvement in the project. And they are entirely distributed projects:

there is no geographical centre, such as an office, where participants regularly meet

face to face. None of the projects handle revenue from selling their software or ser-

vices (although individual participants might be paid by organizations for their skills

or experience from time to time). Each of the projects adopts more-or-less the same

technical infrastructure: a publicly-readable source code repository, mailing lists or

forums, trackers and regular releases documented with release notes. In this way they

are similar to the origins of Linux, the critical case of FLOSS development.

One objection to this choice is that the cases chosen are small and relatively

unimportant as pieces of software. There is truth in this: none are powering the

internet or large, expensive websites. Yet the projects studied in this dissertation are

relatively large, at least in terms of numbers of developers, and are popular given the

projects’ limited aims. Each challenges multiple commercial applications. Most im-

portantly their scale and non-hybridization provides the right empirical environment

for untangling the novelty that is central to what is meant when FLOSS is invoked

in discussions of organizing. Understanding the organization of community-based

projects is vital to understanding adaptation, including hybridization.

Diverse fields, both academic and practitioner, look to FLOSS for potentially radi-

cal improvements even if their understandings are perhaps based more on perceptions

than reality. Whether the surprise be in FLOSS intellectual property policies, or the

common lack of formal over-arching organizations, or the heavy involvement of unpaid

volunteers working in their spare time, or the informality of the work arrangements,

or the openness of project decision making, or the innovative use of collaboration

technologies, the message is the same: we can learn from how these teams and com-

CHAPTER 1. BACKGROUND AND RESEARCH QUESTIONS 10

munities work. It is, therefore, imperative for research to investigate, question and

test these common perceptions.

It is hoped that this research will be useful to both academic and practitioner

audiences. The intended academic audience includes researchers from Information

Systems, Organizational Science, as well as Small Group researchers from Social

Psychology and empirical Software Engineering researchers. Specifically:

1. Information Systems scholars interested in the organization of technology-supported

teams, as well as those interested in understanding the strategic and operational

implications of FLOSS for the IS function and software development firms,

2. Organizational scholars interested in novel organizational forms and sources of

interdependency as a way to understand appropriate organization.

3. Software Engineering researchers interested in the interaction of organizing and

the task of building software.

The practitioner audiences for this research includes those with and without ex-

perience in FLOSS projects, specifically:

1. IS professionals seeking to engage effectively with FLOSS communities,

2. Software developers seeking to start or effectively contribute to a FLOSS project,

3. Experienced FLOSS participants seeking to adjust their project to meet the

changing challenges as their project grows and develops.

Answers to the research questions of this dissertation are vital to a satisfactory and

adaptable understanding of FLOSS development. The core of organizing is bringing

together people (motivation) to build something together (production). As Literature

Review I (Chapter 2) will argue, existing studies of FLOSS have failed to adequately

integrate these aspects of organizing. Furthermore it is clear that technologies of col-

laboration and production are important, a point taken up in detail in the Discussion

(Chapter 8). Only by bringing these aspects together will a more satisfying theory

of FLOSS organizing emerge.

CHAPTER 1. BACKGROUND AND RESEARCH QUESTIONS 11

1.4 Method and ethics in the FLOSS context

The community-based FLOSS projects that are the focus of this dissertation are

voluntary and transparent communities. The participants invest their time in the

project for whatever purposes might drive that participant and everybody is careful

to acknowledge each other’s “real lives”. The ethics of the community, as depicted in

practitioner written guides such as Raymond and Moen (2001, §Before You Ask) are

clear in arguing that people seeking input from the community should have “done

their homework” with the available resources and demonstrated that they are willing

to invest their own time before drawing on the time of others.

The research interest in FLOSS has been intense and projects—always pressed for

time—are quick to lose patience with researchers who do not acknowledge the ethics of

the community and who demand the time and attention of the participants without

contributing or having adequately examined the public archives before beginning

research. Requests for surveys and interviews are often greeted with annoyance, even

when introduced by community leaders, and ignored as a matter of course by key

participants. Two threads from the Gaim project illustrate the issue.

[An] endless stream of “surveys” about open source development from re-

searchers who obviously aren’t checking the background material, leading

them to ask the same questions over and over to hundreds of open source

developers who have better things to do with their time (e.g. developing

open source applications) than Yet Another Survey with the Same Ques-

tions On It. 3

One participant facetiously adds a question to an imagined survey,

Question 20: When you became a contributor to Open Source software,

did you anticipate being asked to participate in an almost identical time-

consuming survey every month or so, by unconnected people from uni-

versities across the world, apparently condemned to attempt repeating the

3http://sourceforge.net/mailarchive/message.php?msg id=20050405171258.130.qmail
%40web50601.mail.yahoo.com

http://sourceforge.net/mailarchive/message.php?msg_id=20050405171258.130.qmail%40web50601.mail.yahoo.com
http://sourceforge.net/mailarchive/message.php?msg_id=20050405171258.130.qmail%40web50601.mail.yahoo.com
http://sourceforge.net/mailarchive/message.php?msg_id=20050405171258.130.qmail%40web50601.mail.yahoo.com

CHAPTER 1. BACKGROUND AND RESEARCH QUESTIONS 12

same piece of research again and again and again, only to find that the

responses are underwhelming and probably not representative? 4

For these reasons this dissertation pursued only non-intrusive methods which do

not subtract from the time available for the project and are in-keeping with the ethics

of the projects. These methods are participant observation and study of fully public

archives. This does mean that the research has not benefitted directly from feedback

from participants; this is a loss. To counter this, and to reciprocate the projects’

openness, this dissertation, its data and all intermediate products and code are being

made publicly available.5 In this way the author hopes to attract the interest and

feedback of the projects studied and improve the research presented here.

1.5 The structure of this Dissertation

The dissertation is structured in three Parts. Part I contains this introductory chapter

and an initial literature review. Part II is the main substance of the dissertation. It

proceeds through a logic of discovery, replication and formalization, with a return

to the literature between each step giving a total of five chapters. Part III of the

dissertation consists of two chapters: a Discussion, which draws together answers to

each of the research questions and a Conclusion, which summarizes contributions and

makes the case for future research.

The initial literature review, Chapter 2, introduces a framework for studying

effective teams as a starting point for research. The chapter uses the framework

to organize a high-level survey of existing literature on FLOSS development. This

survey highlights a split between studies with an interest in motivation and those

4http://sourceforge.net/mailarchive/message.php?msg name=2c5131b00506060210300a1849
%40mail.gmail.com#content

5http://james.howison.name/pubs/dissertation.html

http://sourceforge.net/mailarchive/message.php?msg_name=2c5131b00506060210300a1849%40mail.gmail.com#content
http://james.howison.name/pubs/dissertation.html
http://sourceforge.net/mailarchive/message.php?msg_name=2c5131b00506060210300a1849%40mail.gmail.com#content
http://sourceforge.net/mailarchive/message.php?msg_name=2c5131b00506060210300a1849%40mail.gmail.com#content
http://james.howison.name/pubs/dissertation.html

CHAPTER 1. BACKGROUND AND RESEARCH QUESTIONS 13

with an interest in production and argues that this is why the literature has not yet

been able to provide satisfying answers to the FLOSS phenomenon.

Part II presents an unfolding arc of discovery, replication and formalization, with

returns to the literature as necessary. Each study describes its own method, results

and interim conclusions. Discovery: BibDesk Participant Observation (Chapter 3)

provides discovery through participant observation, highlighting emic findings regard-

ing the organization of FLOSS work. Such rich case study results are strengthened if

they can be replicated in a systematic way (Yin, 1994). To prepare for such a replica-

tion Chapter 4 returns to the literature, updating the teamwork framework with an

increased awareness of episodic work and introducing literature on coordination and

dependency as an appropriate way to systematically represent FLOSS organization.

Replication: Fire and Gaim Archive Study (Chapter 5) then presents a systematic

archival study of two projects that are similar to BibDesk. This study replicates,

focuses and strengthens two of the findings of Discovery: BibDesk Participant Obser-

vation (Chapter 3): the dominance of individual work and deferral as a production

strategy.

At this point the dissertation has a tentative answer to the first research question:

effective FLOSS production is primarily organized into short, individual tasks which

advance the software through layering. Yet the question remains: how is FLOSS

production able to integrate and advance through such work and how is this linked

to motivations? Chapter 6 returns once more to the literature to examine motivation

and the literature that links it with production. This background enables Chapter 7

to present a more formalized model which “generalizes to theory” (Yin, 1994), ex-

plaining the findings of Chapter 3 and Chapter 5 and integrating understandings of

production and motivation in FLOSS projects, thereby answering RQ2. The model

presented makes explicit the conditions necessary for it to operate and thus provides

a framework to answer to RQ3, on adaptation, which is undertaken in the Discussion

CHAPTER 1. BACKGROUND AND RESEARCH QUESTIONS 14

(Chapter 8). In this way the dissertation answers all of its research questions and ad-

vances our understanding of FLOSS development and its implications for the future

of work.

Chapter 2

Literature Review I

In order to study the effective organization of successful FLOSS production, and link

it to motivation, it is useful to adopt a framework for understanding existing litera-

ture. The framework chosen is the Input-Process-Output (IPO) framework and its

descendants. This framework identifies attributes of the empirical world which form

part of an explanation of effective teamwork. While the “teamness” of FLOSS pro-

duction is a central question of this dissertation, one has to start somewhere and the

literature on teams, rather than organizations, individuals or societies, is the approach

found to be most relevant, in that it assisted the author most in understanding and

framing his participant observation experiences. The framework comes from the field

of Management and is heavily influenced by social-psychology. It is quite positivist

in nature. This fits with the majority of the literature on FLOSS and is useful for

this reason, even though it would not cope well with the FLOSS literature from more

interpretative and critical fields, such as Science and Technology Studies, which are

not examined here.

The IPO framework introduced in this chapter allows us to present a high-level

summary of the FLOSS literature, drawing heavily on an as yet unpublished re-

view article to which the author contributed (Crowston et al., 2008). However, the

15

CHAPTER 2. LITERATURE REVIEW I 16

presentation here goes further in order to addresses the research questions of this

dissertation. It argues that current research on FLOSS does not adequately link un-

derstandings of motivation and the organization of production, and therefore fails to

provide a substantive basis for a satisfactory explanation of the FLOSS phenomenon.

2.1 A framework for studying team effectiveness

The Input-Process-Output framework (IPO)

A crucial approach to understanding the organization of teams is part of a broader ap-

proach to explaining what makes for effective teamwork. The Input-Process-Output

model of team effectiveness was introduced and developed by Richard Hackman and

colleagues (Hackman and Morris, 1978) as well as Joseph McGrath (McGrath, 1991,

1984). As shown in Figure 2.1 work teams are conceived of as converting inputs to

performance outcomes, and a team’s processes are what mediates that conversion.

Inputs include the team’s composition, structure and task (or goals) as well as the

environment in which they operate. Outputs include the results of a team’s interac-

tions, including task output (e.g. software) as well as effects on the team itself (such

as satisfaction and intention to continue to work together).

Focusing on Process

The Process category has been significantly fleshed out since this early representation

and Rousseau et al. (2006) provides a comprehensive review. It begins by defining

them as bringing “together all of the behavioral, cognitive, and affective phenom-

ena existing in teams” before focusing on behaviors, as they are “observable and

measurable actions” (p. 541).

CHAPTER 2. LITERATURE REVIEW I 17

Figure 2.1: An early version of Hackman’s Input-Process-Output Framework (Hack-
man and Morris, 1978)

These behaviors are divided up into “taskwork” behaviors and “teamwork” be-

haviors. Taskwork behaviors “contribute directly to the accomplishment of the tasks

and are related to the technical aspects of the tasks that exist independently of work

organization” which, in Rousseau’s opinion, “may not be generalized to other [types

of tasks that other teams perform]” (p. 542).

By contrast teamwork behaviors “are inherent to the existence of work teams” and

are “the overt actions and verbal statements displayed during interactions between

team members to ensure a successful collective action” (p. 542). Teamwork are

those actions that make the team work as a team. The anticipated generalizability

of teamwork, as opposed to taskwork, has reinforced the focus of this literature on

teamwork, rather than taskwork, a question to which we will return below.

CHAPTER 2. LITERATURE REVIEW I 18

Figure 2.2: A detailed conceptualization of teamwork in the IPO approach (from
Rousseau et al., 2006). Note that Taskwork is set aside prior to this
breakout.

Figure 2.2 shows the summary of teamwork presented by Rousseau et al. (2006)

as part of the IPO approach to Process. Their tabular summary of processes and

associated authors and studies runs to two pages and includes such diverse areas of

study as communication, cooperation, helping behavior, innovating, conflict manage-

ment, goal setting, monitoring, problem solving, adapting and decision making (to

name just a few). Communication is considered part of the “information exchange”

category.

The research in this dissertation requires a way to understand the organization

of production and link it to motivation so that its adaptability can be assessed. The

CHAPTER 2. LITERATURE REVIEW I 19

teamwork processes in the IPO model are clearly linked to organization, but it is also

clear that they would need to be represented and understood in a variety of different

manners. Scholars do not, in general, attempt to represent and examine each of

these concepts, instead focusing on a small number in great detail and developing a

representation of that specific process. For example, Crowston and Osborn (2003)

describes techniques to represent coordination practices, and Poole and Roth (1989)

developed a representation for decision making practices.

Despite the depiction of these aspects of work in teams as “observable behaviors”

it seems that a substantial, and specialized, conceptual apparatus is required to turn

observations of human actions into knowledge about these aspects of how teams

work. The effort to see these aspects as ‘of a kind’ requires a move to a relatively

high conceptual level and the path to operationalization and observation is certainly

different for each. Researchers need to look in different places and in different ways

to see each of these processes.

The setting aside of taskwork is particularly telling in this regard. Certainly some

of these processes occur through explicit actions oriented to the team-as-team but it

seems likely that many of these functions are, in fact, achieved through and during

(or at least at the same time and in the same venues as) taskwork.

2.2 Current FLOSS research

The research on FLOSS development is substantial. This section presents a summary

of the literature drawn from Crowston et al. (2008), a review article to which the au-

thor contributed. This review is presented in the context of the IPO model presented

above, beginning with Inputs then discussing Outputs before dealing with Process

in greater depth. The section concludes by going beyond the review article to argue

CHAPTER 2. LITERATURE REVIEW I 20

that there has been little to no integration across these categories, specifically there

has been little to no integration between studies of motivation and production.

Inputs (FLOSS Context)

Crowston et al. (2008) discuss three main categories of Inputs: member characteris-

tics, project characteristics and technologies in use. The research on member char-

acteristics includes work on the motivations and time commitments of individual

participants as well as developer numbers.

The empirical literature on FLOSS motivations is extensive and growing (Lakhani

and von Hippel, 2003; Lakhani and Wolf, 2003; Hars and Ou, 2002; Ghosh et al.,

2002; Ye and Kishida, 2003; Chin and Cooke, 2004; Ke and Zhang, 2008). One clear

finding is that the motivations of participants are diverse and there is little uniformity

amongst participants (Feller et al., 2005). The diverse motivations found in surveys

of FLOSS participants fall into two overall categories. The first are motivations that

could be obtained in an individual activity context:

• learning by doing

• the product itself

• intellectual stimulation

• self-efficacy

The second are those where motivations require associational activity and likely

be better supported by interdependent performance.

• learning from others

• building reputation

• norm-based reciprocity

CHAPTER 2. LITERATURE REVIEW I 21

In addition there are motivations that don’t fall into either category, including

ideological commitment to opposing proprietary software.

Hertel (2007) points out that these studies of motivations in FLOSS projects have

been almost exclusively focused on “person-oriented” rather than “job-related” fac-

tors, by which he means aspects of the experience of participation, such as autonomy,

task identity, and feedback opportunities (Hackman and Oldham, 1980). He argues

job design factors are more relevant to adapting FLOSS organization techniques to

other environments, since they are more amenable to manipulation. There is, how-

ever, little empirical work examining these factors. Hertel (2007) is a conceptual

paper and is “not aware of any systematic job design analyses of OSS being available

to date”. Chin and Cooke (2004) do include job design and coordination in their

model, but the only data presented is a pilot study of under 40 respondents selected

at a face to face open source support group. Few of their hypotheses were supported.

Ke and Zhang (2008), a very recent contribution, used a survey to find that task

empowerment (assessments of autonomy and meaningfulness) was positively related

to task effort.

The stronger research in this area includes a measure of effort expended by partici-

pants, allowing the research to assess which motivations were more “active”. Research

without such a dependent variable tends to result in something of a ‘laundry list’ of

motivations and relies on frequency of mention to rank order them. Lakhani and

Wolf (2003) use their measure of effort to emphasize the importance of two moti-

vations in particular: “enjoyment based intrinsic motivation” and the “need for the

product”. This finding was echoed by a content analytic study of open-ended sur-

vey responses (Hemetsberger, 2001). Not all the studies are in agreement however.

Hertel et al. (2003), in a study of the Linux community, found greater emphasis on

community identification particularly with groups building in sub-systems of that

very large project. It is worth noting, as Crowston and Fagnot (2008) do, that none

CHAPTER 2. LITERATURE REVIEW I 22

of these studies attempted to separate initial motivations (recruitment motivations)

from motivations for on-going participation (retention motivations) despite the pos-

sibility that these might be distinct.

There are few studies that have examined overall time spent on FLOSS projects.

Luthiger (2004), using self-reported individual measures of time commitment, found

an average of 12.15 hours per week spent. Project leaders were found to spend an

average of 14.13 hours, and bug-fixers and otherwise active users spending closer to

5 hours per week. These findings are complimented by those of Lakhani and von

Hippel (2003) who studied the amount of time participants spend reading and an-

swering user support questions in the Apache forums, finding that the most frequent

answer providers spent 1.5 hours per week, dropping to just half an hour for infre-

quent information seekers. This confirms the common understanding that FLOSS

development happens in “spare” time and, in general, is not the central undertaking

in participant’s lives.

Another crucial input in the IPO framework are the technologies of production

and task. Many studies of FLOSS development point to the importance of collab-

oration technologies, including source code repositories and email lists (Fogel, 1999;

Scacchi, 2004) as well as Trackers (Michlmayr, 2004). Robbins (2002) examines nine

FLOSS technologies and argues that they “fit the characteristics of open source de-

velopment processes” and that their adoption in other software environments may

influence processes in those environments. Yamauchi et al. (2000) argue that the

patterns of production they observe (discussed under Process below) are the result

of “collaboration with lean media”, drawing on theories of media richness.

Process

The work examining process can be usefully summarized using the division between

teamwork and taskwork described above (Rousseau et al., 2006). Studies of teamwork

CHAPTER 2. LITERATURE REVIEW I 23

have focused on separated aspects such as Coordination (Crowston et al., 2005),

Learning (Annabi, 2005), Socialization (von Krogh et al., 2003), Decision-making

(Heckman et al., 2006; Gacek and Arief, 2004; Fielding, 1999). These studies are

useful but rarely discuss how their chosen process of interest interacts with the rest

of the context of FLOSS development.

Taskwork, in the FLOSS context, refers to the day to day production of software

and has been a less common topic of study. One group of research has worked

to compare FLOSS projects to established models of software production, such as

traditional waterfall production and agile methods (Jensen and Scacchi, 2007; Mockus

et al., 2002; Warstaa and Abrahamsson, 2003).

Only a few studies have actually examined the unfolding course of work. The first

is Yamauchi et al. (2000) who conducted content analysis of the mailing lists of four

projects and built a process model of the origins of new features. They employed a

state-transition probability analysis, shown in Figure 2.3, to conclude that the new

feature process often begins with a code hand in, rather than planning and resource

assignment, followed by coordination to integrate the code. They argued that this

process is caused by only having “lean media” available and thus reducing the ability

of the project to work in other ways. They appear to assume that the project would

be more successful if it worked in ways that promoted greater collaboration, but that

the leanness of the available media prevents this. In short the developers make “the

best of a bad situation”.

Crowston and Scozzi (2004) conducted a study which examined episodes of bug-

fixing in a Bug Tracker, coding each phase of the work and summarizing the processes

found in terms of sequences and dependencies between steps. They did examine

participation in their bug-fixing tasks, noting that some participants seemed to do

substantially more work and that most bug-fixing processes involved only one or two

core members in interaction with active users in the wider community. Heckman

CHAPTER 2. LITERATURE REVIEW I 24

Figure 2.3: The transition probabilities between events on the newconfig project de-
veloper mailing list. Note the high occurrence of the transition from begin
to hand-in (line down left of figure) (Yamauchi et al., 2000, Fig. 3).

 109

were announced when the product became stable and
provided enough functions.

In this process, TODO lists played a crucial role. To facilitate
the efficient work, the form of TODO lists was highly
elaborated. First, each item representing each task had an
indication of priority level scored from A+ to C- with A+ the
most urgent. Second, each item also had a difficulty level
from A+ to C-. Finally, a short description was attached to an
item. Importantly, the length of the descriptions was limited
up to two lines. This means that the descriptions were not to
specify the content of the task but to explain the type of the
task. The way of performing tasks was decided by the
individual team members.

During the development, the project maintained one unified
set of source files in its source repository of CVS. The project
had started with setting up a CVS repository and the
compilation of mailing lists. Each task began with copying
the master code of the repository into each individual’s
workspace. The programmers modified the code and tested
the modification in the local copy. When finishing the
implementation, they extracted the difference between the
modified version and the central master code with ‘diff’ and
then submitted the difference to a mailing list.

Another important aspect was that this project had grown
during the development. At the outset, only about ten people
had gathered to start the project but finally 54 members were
involved. The openness would appear key for successful
development.

Communication Pattern
Communication among members averaged 4.29 messages per
day. To understand the communication pattern, each of 479
sampled messages was coded into one of the five categories,
‘question’, ‘response’, ‘hand-in’, ‘proposal’ and ‘other’
employing the content analysis method [16]. The coding
criteria and frequencies are shown in Table 1. ‘Question’ is
any message to ask for information both about technical and
managerial matters. ‘Response’ includes any replies to
previous messages from answers for questions, agreement,
disagreement and additional information. Although the study
initially divided this category to more fine-grained ones, we
put all into ‘response’ since we could not achieve reliable

agreement rates. ‘Hand-in’ is a general report of any kind of
action, for example, patches, bug reports and successful test
results. Finally, ‘proposal’ is the message that contains ideas
for improvement or problem solving. The reliability measure
is the agreement rate between two independent trained
coders.

We present the communication pattern as a transition diagram
of message categories in Figure 33. We separated the series of
messages according to discussion threads indicated by the
references in ‘References’ and/or ‘In-Reply-To’ fields of the
electronic mail standard. The ‘begin’ and ‘end’ labels indicate
the beginning and the end of threads. The value under a
category label is the occurrence probability of the category
and the value attached to an arc is the transition probability.
Small probabilities (occurrence probability of category a x
transition probability from a to b < 0.01) and ‘other’ are
eliminated. P-values and NS (not significant) in the figure
indicate the significance levels of χ2 test against the null

3 This figure was constructed by an open-source program DOT,

distributed by AT&T, with slight manual modification.

Rough
Specifications

TODO List
Implementation

Peer-Review
Repository

Update

Release

select

commit

hand-in

decompose

stabilize

step-up

Figure 2: Development Process of Newconfig Project

Table 1: Message Categories in Newconfig

Category Coding Criteria Frequency %
Reliability
Cohen’s κ

Question Asking for information 18.8 .898

Response Responding to messages 49.9 .859

Proposal Proposing an idea 9.2 .839

Hand-in Reporting results of action 14.2 .960

Other Residual category 7.9 .817

N=479

begin

proposal
(0.092)

question
(0.188)

hand-in
(0.142)

end

response
(0.499)

0.161
(NS)

0.226
(NS)

0.323
(p<0.001)

0.167
(p<0.025)

0.111
(NS)

0.125
(NS) 0.444

(NS)

0.276
(NS)

0.114
(p<0.05)

0.496
(NS)

0.421
(p<0.001)

0.038
(p<0.005)

0.103
(p<0.001)

0.359
(p<0.001)

0.059
(p<0.001)

0.289
(NS)

0.144
(NS)

0.267
(p<0.001)

0.178
(NS)

Figure 3: Communication Pattern of Newconfig

333

et al. (2006) take a similar approach, examining the unfolding of episodes of software

implementation, which they conceptualize as a type of decision-making. Nonetheless

they are able to report sequential patterns and durations as well as participation fig-

ures, finding relatively low numbers of distinct participants per episode. Both of these

studies examined only a single venue—either the bug tracker or the mailing list—and

neither attempt to explain their findings through a theory that integrates important

aspects of the full context of FLOSS production, such as participant motivations.

Outputs (FLOSS Success)

The IPO model above identifies both products and developer satisfaction as outputs

of teamwork and the whole framework is designed to describe the factors contributing

CHAPTER 2. LITERATURE REVIEW I 25

to effective teamwork. The question of effectiveness is thus crucial, since this disser-

tation is interested in successful FLOSS projects. Since success is the most common

dependent variable in studies of FLOSS development it has been extensively concep-

tualized.

Crowston et al. (2003, 2006a) examine the question of the meaning of success

and effectiveness in the FLOSS context. They examined the existing literature and

conducted an online focus group as well as developing sample success measures. They

argue that, in the FLOSS context, success is most usefully understood as a multi-

dimensional construct extending across each of the phases of Input, Process and

Output, rather than the traditional focus on Outputs. This is because FLOSS projects

are not pre-assigned and externally managed tools for production, they are entities

which must be self-defining and self-sustaining if they are to achieve their own goals

and have substantial impact. They propose measuring success through measures of

inputs (such as developer attractiveness), measures of process (such as the speed of

fixing bugs), and measures of output (such as careful use of downloads and pageviews

to show popularity and the quality of the software produced).

Unfortunately success is rarely conceptualized in such a complex way in the rest

of the literature, with research choosing to concentrate on one measure determined

by the overall concern of their academic field. For example business focused research

is often content to use downloads or popularity of software as a proxy (e.g. Krishna-

murthy, 2002; Stewart et al., 2006). It seems that this is, in part, because downloads

are considered analogous to sales of closed-source commercial software. Similarly

Software Engineering focused research is often content to use system quality, such

as maintainability of the software as a measure of successful FLOSS production (e.g.

Schach et al., 2003; Bezroukov, 1999).

CHAPTER 2. LITERATURE REVIEW I 26

2.3 Linking motivation and production

Crowston et al. (2003, 2006a) rest their conceptualization of success on an argument

which begins to analyze the full challenge facing FLOSS projects, from motivation

and recruitment of developers, to the satisfying creation and distribution of work-

ing software. The authors have not yet developed integrated empirical tests of their

conceptualization and few other studies have attempted this type of integrated ex-

planation.

The work of Michlmayr argues strongly for the importance of the volunteer con-

text in the organization of FLOSS production (Michlmayr, 2003, 2004; Senyard and

Michlmayr, 2004). Prior to pursing an academic Ph.D., Michlmayr was the elected

leader of the Debian FLOSS distribution and brought this experience to his work. He

argued that the volunteer context strongly shaped the organization of production,

There is an important discrepancy in the requirements of quality for planned

and systematic activities and the voluntary nature of open source projects

which is based much more on ad hoc activities” (Michlmayr, 2005).

Senyard and Michlmayr (2004) argue for a life-cycle model of FLOSS development

that began with the need to produce a working prototype to attract participants

and then argue that successful projects ensure that their code is able to support

satisfying individual and parallel activity which they, following traditional software

engineering understandings, ascribe to modularity, “The properties of the design and

implementation of the prototype must motivate others to participate in the project.

This is facilitated by a simple, clear and modular design.” (p. 5).

Finally Michlmayr (2003) examines difficulties within the Debian project due to

over-reliance on individual volunteers as maintainers for packages. Interestingly his

proposed solution is not the obvious course of “replacing lead developers with teams or

expanding the size of existing teams” since groups might reduce the participants’ mo-

tivations by reducing feelings of ownership and responsibility, leading to assumptions

that others will do it. Further they argue against using teams because they introduce

CHAPTER 2. LITERATURE REVIEW I 27

complexity and communication issues. Overall Michlmayr argues that team respon-

sibility “works to counter the benefits which have made Free Software community’s

‘one and many’ development and debugging system so effective.”.

Rather Debian adopted the simple expedient of an “explicit backup maintainer”;

another individual. In addition they provided effective, publicly visible communica-

tions so that the backup individual can assume the role if it is not being performed.

Even though Michlmayr is concerned that “strong reliance on individual develop-

ers is a quality assurance consideration in that it is unrealistic to expect complete

predictability and reliability from volunteers”, his solution is to acknowledge the mo-

tivational importance of the individual organization of FLOSS work over the more

traditional management technique of creating groups, while stressing a communica-

tions infrastructure which facilitates opportunistic collaboration.

Other than these contributions, and three motivational studies addressing job

design discussed above, the literature on motivations in FLOSS does not consider

their impact on production, while the small literature on processes in production has

only rarely examined theoretical reasons for the shape of the processes they observe.

2.4 Literature I: Conclusions

This literature review makes the argument that the FLOSS literature has gener-

ally failed to integrate research on motivation and organization and that this seems

fundamental to understanding how effective FLOSS development projects do what

they do. The framework and literature examined here show that the phenomenon is

not wholly unexplored, but they also indicate the peculiar and sometimes counter-

intuitive nature of FLOSS projects and show the importance of the participant’s own

understanding and experience. Further, the review shows that there are a myriad

of possibly relevant aspects of organization and clearly any study cannot address all

CHAPTER 2. LITERATURE REVIEW I 28

of them. Finally, as discussed in the Introduction, we take an ethical position that

research should be as non-intrusive as possible. For these reasons the research be-

gins with participant observation, discovering results which will then be replicated

through archival study before being formalized into an explanatory model. Together

these approaches are capable of answering the research questions of this disserta-

tion and improving our understanding of FLOSS development and its organizational

implications.

Part II

Research

29

Chapter 3

Discovery: BibDesk Participant

Observation

3.1 Introduction

This chapter reports the results of participant observation of a FLOSS project called

BibDesk, over a period of four years. The presentation of results is organized into

four sections. The first section presents the case study method: sensitizing concepts,

case selection and participant-observation logistics. The next two sections provide a

rich description of the case from two different perspectives, that of an observer and

that of a participant. In the fourth and final section the chapter sums up findings for

each of the sensitizing concepts.

This chapter is written in the first person to emphasize that it is the result of

individual participation and observation. The experience that guides the results of

this chapter is personal and specific, thus the first person “I” is appropriate and

reminds the reader of the nature of the research.

30

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 31

3.2 Method

Sensitizing Concepts

Case studies, and particularly those with a participation component, provide a wealth

of immerse, holistic experience. The challenge for the researcher is to embrace this

holism, without loosing sight of the ultimate goal of producing structured, transferable

knowledge. For this reason I chose to enter the field with three concepts through

which I wished to focus my experience in the field. Such priming of the interpretative

process is recommended for qualitative research (Glaser, 1978; Patton, 2002; Bowen,

2006).

The sensitizing concepts are linked to the overall research questions of the disserta-

tion and to the literature review on FLOSS. They are: 1) motivation, 2) coordination

and dependency, and 3) the experience of organization. During the case study I peri-

odically returned to the literature, particularly that presented in the proceeding and

following chapters, so as I entered the field I had less comprehensive understanding

of the concepts. Indeed my experience in BibDesk helped guide my integration of the

literature, just as the literature guided the results presented in this chapter.

Selecting a case

A case study needs a case; and that case has to be a case of something. In the Intro-

duction to this dissertation it was argued that the most appropriate type of FLOSS

project to discover the novel “something else” at play is a community-based, non-

hybrid project. Further I needed to choose a case that I could realistically contribute

to and which I was likely to be able to sustain a long-term commitment. For this

reason I let my case emerge naturally from my day to day practice as an academic.

I began to use FLOSS software for my academic work whereever possible, focusing

particularly on writing and statistical analysis. For writing I switched from using

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 32

Microsoft Word to trying both OpenOffice and the LaTeX document preparation

system (common in computer science), and from Endnote to BibDesk, a reference

management program for Mac OS X. At the same time, while taking introductory

statistics, I used the R statistics package, rather than SPSS. Further I taught myself

Perl, an open source and widespread scripting language and Ruby on Rails, another

scripting language and web application framework.

Over time I came to see BibDesk as an appropriate project for participant observa-

tion. I found entry to the project easier and found that it integrated most consistently

into my daily practice. By contrast OpenOffice was quite opaque, as many functions

were still performed by the co-located Sun engineers; it is a hybrid project. While

I remain a frequent user of R, Perl and LaTeX, these projects did not prove to be

appropriate for participant observation. LaTeX is a very mature project with very

little continuing development. For R and Perl the substance of the day to day work,

statistics and language theory, was beyond my programming skills.

By contrast BibDesk was useful to me in a daily fashion, small and emergent

enough to hope to come to understand in detail and the substance of its programming

task was within my understanding. Nonetheless there was, as I will show below, a

significant and sometimes insurmountable learning curve as I worked to provide useful

contributions to the project. As discussed below the project has always been open

source, and the participants are unpaid and distributed. For these reasons BibDesk

is an appropriate case of community-based FLOSS development, as defined in the

Introduction (Part I, on page 8).

Study Logistics

The conduct of the study was simple, at least in terms of its logistics. The project,

as with most FLOSS projects, is accessible to anyone with a computer and internet

access. The technical infrastructure, as we shall see, was open and available; although

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 33

my experience in learning its use was crucial to understanding how the project works

and is reported below.

During the course of the participant observation I recorded my growing under-

standings in two ways. The first is to note that the nature of the collaboration

means that evidence of my participant was automatically stored in the project’s pub-

lic archives. When this was not true, as we shall see, I recorded my efforts in a

journal. In this same journal I noted episodes of activity which I thought relevant to

the sensitizing concepts, together with references to the literature. Simultaneously

I was reviewing the relevant literature, so evidence of my growing understanding of

the relevant literature is also recorded in this combined journal. Finally the project

archives formed a source for the pilot archival study which pre-figured the archival

studies to be reported in Chapter 5.

Overall I have participated in the project for over 5 years, from May 2003 until the

present (December 2008). I was quite active for about 2 years, from mid-2003 through

mid-2005 and less active from then onwards. Today I continue to have commit rights

but my involvement is mainly as an active user, answering user questions and assisting

the active developers in discussions with other users. My participation is discussed

in detail below.

I did not explicitly inform the BibDesk participants that I was conducting re-

search, nor did I seek their informed consent. Neither did I artificially hide my area

of study: it is plain on my website for all to see and I often included FLOSS research

references as test cases in discussions in the email. This is ethical because FLOSS

projects are entirely public and all participants know this, indeed they celebrate it.

I judged the risk to other participants to be minimal and the impact of seeking in-

formed consent substantial. There is a useful debate (Robles, 2007) regarding whether

transformations of public records in certain ways, such as overall SNA or contribution

league tables, provide risks to the participants or the projects, but this work does

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 34

not do such overall summaries. Furthermore this dissertation and all intermediate

archives and ontologies will be released in reciprocation for the project’s openness. I

also make available all my FLOSS publications as downloadable PDFs, ensuring that

my work is available to the subjects of this research.

3.3 BibDesk as a Project

BibDesk is a bibliographic manager that runs on Apple’s OS X operating system. It

began as an editor for BibTeX, the primary bibliographic system used in the Natural

and Computer Sciences but has become an increasingly comprehensive research man-

agement tool, an “iTunes for Academic References”; although it is bound to BibTeX

in fundamental ways. Its primary proprietary competitor is Endnote, although Bib-

Desk does not have comparable integration with Microsoft Word. There are other

FLOSS reference managers, including JabRef and Zotero, which has made a large

impact in the last year. However in its niche—Mac OS X users using BibTeX and

LaTeX—BibDesk is a dominant choice.

The project is hosted on Sourceforge, the primary hosting provider for FLOSS

projects. Sourceforge’s services are available without charge to projects released under

an open source license. BibDesk was created by a computer science doctoral student

at UCSD and first released on Sourceforge in September 2002, as an already working,

but limited and somewhat rough, BibTeX manager.

Project Success

The BibDesk project is small compared to some very well known FLOSS projects

but it is relatively successful compared to the bulk of registered FLOSS projects. As

discussed in Chapter 2, Crowston et al. (2003, 2006a) provide a definition of success

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 35

Figure 3.1: An October 2008 screen shot showing the basic layout of BibDesk. Note
the groups on the left-hand side, the Container column, and the PDF
linked to the entry on the right

for FLOSS projects which takes into account measures of recruitment, process and

use.

In terms of recruitment, the development team has grown organically and Source-

forge, as of October 2008, lists 13 developers. This places it in the very top percentile

of projects hosted at Sourceforge. Interestingly, however, although 13 developers are

listed, realistically the project currently has only three core developers and two ac-

tive peripheral developers and has rarely risen above such numbers. The peripheral

participants have rotated through over time but are not removed, yielding the 13

developer number. Three developers have Administrator status, meaning they can

add/remove other developers and alter the tools used by the project. These three

are the original founder (who has been less active for the past three years) and the

two most highly active developers. There is no evidence that any of the developers

are co-located and or that any have met met face to face. Indeed when I was visiting

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 36

the city where the founder was a PhD student I suggested meeting socially but he

declined.

In terms of processes, the project has always been amongst the top 3% activity

percentile of Sourceforge projects and, as of October 2008, is in the 99.73 activity

percentile. The activity percentile is a measurement of development activity, based

on source code and project communications.

In terms of use, the project has consistently generated about 200 downloads a

day, and has done so since early 2005. Perhaps more importantly it is well-known

and used in its relatively small niche. Despite many requests, the project has never

moved beyond the Mac OS X platform. Mac OS X is a relatively niche platform, but

it is well represented amongst students, academics and computer scientists, who are

the primary users of reference programs and LaTeX/BibTeX in particular. BibDesk

has also resulted in the spin-off of a complementary, but separate, project for reading

and annotating PDFs, called Skim (skim-app on Sourceforge). Like BibDesk this

project began as a private project by the original BibDesk developer which was taken

open in the BibDesk community. Skim is now almost exclusively maintained by one

of the two other core BibDesk developers, although I believe that all of the long-term

participants in BibDesk are also participants in the Skim community.

Project Infrastructure

The BibDesk project makes use of a set of technical and communication tools, draw-

ing heavily on those offered by Sourceforge but complementing those with its own

hosted resources. Sourceforge provides hosting for application releases, source code

repositories, mailing lists and Trackers (structured web forms for users and devel-

opers to track bug reports, requests for enhancement and other longer term issues).

BibDesk has two interactive mailing lists, the “develop” list and the “users” list and

two automated lists, “commits” which broadcasts changes checked into the source

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 37

code repository, “crashes” which receives automated reports when a user’s copy of

the application crashes. Finally there is a little used “announce” list and sundry

lists which broadcast activity in the Trackers, created since the participants wanted

to get an easier understanding of cross-venue activity. BibDesk uses two Trackers:

Bugs and RFEs (Request for Enhancements). The project has not adopted many

of the new services offered by Sourceforge over time, choosing not to use Forums,

the Task manager, Skills listings or Services (a marketplace for paid support and

development). The project did switch from CVS to SVN and does accept donations

through the Sourceforge system, although there are very few and they are not a topic

of discussion on the BibDesk mailing lists.

Beyond the Sourceforge tools, BibDesk has a website with a linked Wiki, which

has grown in use and usefulness over the years (despite a slow and unstable start).

Finally there is hosting for daily releases, which is provided through a developer’s

private resources and built automatically on a developer’s personal computer. The

project has never used web forums, or real-time chat systems such as IRC or IM. As

far as I known, developers very rarely email each other “out-of-band”; I have done so

only twice: the declined suggestion of a face to face meeting and once to give moral

support to a developer facing a particularly argumentative, stubborn and rude user

making unreasonable requests. There is good evidence that all the developers are

using the Integrated Development Environment provided by Apple, known as XCode

and Interface Builder.

3.4 BibDesk as an experience

While the previous section presented a high-level and abstract view of BibDesk the

project, this section presents an intimate, personal view of BibDesk. The section is

organized in three chronological parts: initial contact, peak contribution and ongoing

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 38

participation. Through these runs two themes. The first is the relationship between

venues and depth of participation and the second is the burstiness of work. Finally

two episodes of my work in the project are presented in greater detail.

First Contact

My first contact with the project was through the application itself; downloading and

using it in my day to day work. I remember being being literally delighted with the

software. It is well integrated into the Mac OS X system, which is itself aesthetically

pleasing. The application was functional for editing BibTeX files, although nothing

like as feature-full as it is today. While the application may not initially appear to

constitute contact with the project, per se, I believe that the experience embodied

in the application is important. Superficially one encounters relevant participant

names in a number of incidental places during download: the Sourceforge page, the

release notes and in the “About This Application” credits box. Furthermore actually

using the application is the primary shared activity of the project; descriptions and

discussions of the application, its features and use (as opposed to development),

dominate the life of the project, even for participants who are writing code.

From here my next contact with the project was through the mailing lists. My

personal email records that I first joined the bibdesk-develop mailing list (2 May

2003), then the bibdesk-users mailing list (13 June 2003). I joined the bibdesk-develop

mailing list because I wished to speak there, not with the intention of lurking. My

first post to that list was on 3 May 2003 and was an inquiry gently seeking a feature

which proved to already be available. I began the email with a personal salutation

to the project founder and ended it with a vague offer of assistance.

My second contact was with the users mailing list where I summarized my positive

experiences with BibDesk and presented three associated ideas I wanted to pursue (I

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 39

Figure 3.2: My email client records my subscription to the BibDesk lists and my first
few contacts

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 40

return to this below). The response from the project founder was positive, and he

gently directed me to the code, including a specific file and line. I felt both welcomed

and challenged, but not overwhelmed.

Fired up, I was then able to download the code through the anonymous CVS

provided by Sourceforge and attempted to build the project from source. This intro-

duced me to another project venue, the source code repository. Anonymous access

is read-only and allows projects to meet their source code distribution obligations,

allowing outsiders to build, use and learn from their code, while still allowing the core

developers to avoid potential vandalism and maintain the one real control point. In

the case of BibDesk write access was granted without much ceremony, usually after

a potential developer had provided one or two patches.

In simultaneous reading about FLOSS projects I had encountered the notion

that CVS “should always build” and this was brought home immediately, since I

was unable to build the software and therefore could not hope to begin the private,

local cycle of change, build, test that came to be familiar as a FLOSS developer

(see Figure 3.4). I decided that helping to fix this situation would be my first real

contribution, so I detailed my experience and difficulties in an email to the develop

list, pointing out exactly which changes I’d had to make in my local infrastructure

and the source code to have BibDesk build.

In this process I encountered my first experience of the layering that is core to

FLOSS development. At its core BibDesk is a relatively thin layer which provides

a user interface and glue for three sets of libraries. The first are the Cocoa libraries

provided by the Mac OS X operating system, which deal primarily with on-screen

user interface aspects such as the central table-view but also provide an interface to

lower level operating system components, such as File Dialog boxes and programatic

actions such as File Save. The second core library, called btparse, is an open source

library, written in C, for parsing and writing the BibTeX file format. The third set

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 41

of libraries are those provided by the OmniGroup, which complement and extend the

basic Cocoa services, making application development far easier. I had difficulties

configuring my build environment, using the Apple provided IDE to build and use

the OmniGroup libraries. The email thread I began helped the project properly

generalize this environment beyond the founder’s computer. This is not uncommon

in FLOSS projects: for years the default settings for compiling the Linux kernel

were notorious for being specific to the rather underpowered personal computer of

Linus Torvalds (the founder and central author of Linux). The email exchange about

building provided the support I needed to get things setup properly, although I did

not stop experimenting as I waited for a reply, understanding that they might be a

while in coming and I might be able to resolve the issue myself in the meantime.

With my development environment eventually established I was able to write the

very small patch that the project founder had suggested in his reply to my second

contact (it was simply a fix to a missing line-break, just a step above a typo). In-

terestingly it was clear at the outset that the project founder would have been able

to make this fix himself, in a fraction of the time it took me, but that he restrained

himself. This fits with the practitioner-scholar recommendations of “The Cathedral

and the Bazaar” to leave some “low hanging fruit” (Raymond, 1998). I was thanked

in the CVS check-in note and the release note for this patch.

Following up the building issue, I wrote a Perl script which eased the process of

setting up a fully functional development environment. The project founder granted

me CVS access to check in changes to this script myself. The script did not actu-

ally interact with the project source code, but simply automated a series of CVS

commands to get parts necessary for building into the right places, as well as provide

some documentation of needed build settings. I maintained this script for over a year,

until a reorganization of the CVS made it redundant.

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 42

During this time I simultaneously became an “active user”, by which I mean that I

used the application, reported bugs and helped to answer questions on both the users

and develop mailing list. I was also actively building and testing the code from CVS,

particularly as the project headed towards another release. I was never a particularly

active developer; my understanding of the Cocoa frameworks and Objective C (the

language of the project) was quite limited and the learning curve quite high, despite

the intermittent support of the other developers. I noticed that the more productive

developers were intimately familiar with both of these, and each had multiple other

open source and non-open source projects that used them. Nonetheless, from time to

time, I continued to make small contributions to the BibDesk project, such as adding

a Container column (detailed below) to the table view and fixing help files. Over

time I came to understand the Trackers as a place for long-term issues and began to

use them more.

Specific Episodes

In this section I outline two episodes of my involvement as a peripheral developer

in the BibDesk project. The first was a successfully completed episode in which I

added a new column to the main application view. The second was an ultimately

unsuccessful episode1 where I sought to add parsable metadata to the PDFs managed

by BibDesk. In addition I discuss a long-term situation with regard to a putative

BibDesk 2.0.

Successful work: the Container column

In Figure 3.1 you can see the results of one task I undertook as part of the BibDesk

project. The second-last column from the right has the header ‘Container’. For

1http://sourceforge.net/mailarchive/message.php?msg id=8710bc3c77e48685b550

adac0e39315a%40syr.edu

http://sourceforge.net/mailarchive/message.php?msg_id=8710bc3c77e48685b550adac0e39315a%40syr.edu
http://sourceforge.net/mailarchive/message.php?msg_id=8710bc3c77e48685b550adac0e39315a%40syr.edu
http://sourceforge.net/mailarchive/message.php?msg_id=8710bc3c77e48685b550adac0e39315a%40syr.edu
http://sourceforge.net/mailarchive/message.php?msg_id=8710bc3c77e48685b550adac0e39315a%40syr.edu

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 43

articles this displays the Journal title and for Conference Proceedings this displays

the title of the conference or proceedings; even though these elements are stored in

differently named field in the underlying BibTeX (journal and booktitle, respectively).

The purpose of this column is therefore simply to save space, so that a user doesn’t

have to have the the often empty journal and booktitle columns visible.

I undertook this task in April 2005, after having been an intermittent developer

and active user for over a year. I was motivated purely out of personal annoyance.

At the time I was using a 12′′ laptop and had limited screen space. I was trying to

get an overview of publications for a readings and research class and found the table

structure to waste space.

I worked on this largely in private, without sharing my plans with the project

beforehand, since I thought I had a good understanding of what I wanted to achieve

and did not want to bother the other developers with simple questions about the

codebase. My first exposure of the idea was an email to the developer’s list, describing

the feature and including a patch. I hadn’t committed it to CVS, even though I had

commit privileges, because the patch didn’t work quite as I’d hoped (it wouldn’t

sort properly), but worked well enough to show my intentions. The project founder

reviewed the patch and replied with comments on how to fix the sorting issue and

said he thought it should be committed. After 4 hours further work, I resolved the

sorting issue and committed the patch.

The flow of work is depicted in Figure 3.3. In total I estimate that it took about

20 hours of work, which was spread over three days. I worked on this mostly at night.

The time was spent in Project Builder, Apple’s development IDE; with the Apple

library documentation and in very short cycles of change, compile, test familiar to

any programmer. I was very much “in the moment” and fully occupied with this

problem, and spent perhaps 12 hours trying to fix the sorting issue. I finally sent the

patch to the list, admitting that I needed help, at 9:52pm. The project founder, also

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 44

a student but based on the west coast of the US, responded at 10:24pm including

his recommendations for fixing the sorting issue, and one or two improvements with

memory management (never a strong point of mine).

Figure 3.3: The flow of work in building the Container column, including public and
private activity.

I then worked for the next 4 hours to implement his suggestions, checked the fea-

ture into CVS and replied to his email at 4am. I had not wanted to reply immediately

to indicate that I was working on it, since I wanted to demonstrate my competence

by replying that it was all complete.

Failing to add metadata

One of my original intentions with BibDesk was to add bibliographic metadata di-

rectly to the PDF of academic articles. This would enable PDFs to be managed “like

mp3s”. Simultaneously I was working on this idea as a research practicum, which

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 45

resulted in a conference publication outlining the idea (Howison and Goodrum, 2004).

This feature was one of the three ideas which I brought up in my second contact with

the project email lists.

Similarly to the Container column episode this was driven by motivations of per-

sonal annoyance, although this was more abstract and grandiose: it was part of a

research agenda for improving academic workflows. I had to work harder to nail

down my real intentions, discussing them with the project and with my academic

colleagues. When the time came to write the code I faced a serious problem which

blocked my ability to implement the feature. The idea was quite simple: one would

simply write metadata into the PDF, then later read it out. However I was not skilled

enough to write the code for writing metadata into the PDF by myself; it turns out to

be a complex, check-summed, file format that is not amenable, for example, to adding

data to the start of the end of the file (as is done with the ID3 tags for MP3s). The

other BibDesk developers agreed that the feature sounded useful, but not particularly

enthusiastically; it remained my intention rather than becoming a group goal. They

had useful suggestions but also did not have familiarity with the PDF file format.

I realized that I would need to stand on the shoulders of giants, and so I began

to search for a library that could provide these low-level features; my task would be

to stitch them together at a process and UI level. Unfortunately I was never able to

find such a library. Adobe, the makers of PDF, did provide a library that offered at

least part of the needed features but licensing issues made it incompatible with open

source software. My inquiries about changing this met receptive ears at Adobe, but

action was difficult to achieve. None of the other PDF libraries offered flexible enough

operations on the PDF file. I did investigate the PDF file format myself, but it was

too complex for me to resolve. I was worried I would invest significant amounts of

time learning the file format, only to be blocked by another, unforeseen, issue further

down the line.

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 46

So I set the implementation aside for a time. After the conference article was

published (and blogged) I received many communications about the implementation it

promised, including from Nature, the scientific publishers, who wished to incorporate

it into their workflow. Partly for this reason I returned to this task from time to

time checking to see whether new libraries had emerged that made it easier. I also

developed a set of contacts who were also interested, from similar FLOSS projects,

such as JabRef, and we followed the issue with interest; but none had the skills or

time necessary to implement the needed functions. It is only in the past year that

libraries have emerged with the needed capabilities, and the feature was eventually

implemented in JabRef. Unfortunately I haven’t had time to port it to BibDesk yet.

BibDesk 2.0

The final episode I want to highlight was a long running period in which the intention

of the group was to release BibDesk 2.0. As of October 2008 the current version is

1.3.18, which is to say that BibDesk 2.0 never emerged. The idea was floated by the

project founder just prior to BibDesk achieving 1.0 status; which was itself prompted

by a desire to “tie-up loose ends” prior to an effort to build BibDesk 2.0. The effort

began in the same way as BibDesk 1.0 and Skim.app: as a private project of the

project founder which was eventually moved into BibDesk’s public CVS, as a new

CVS module. It took advantage of a set of new libraries released by Apple in their

10.4 operating system, known as Core Data. One of the main intentions was to move

BibDesk from a very heavily BibTeX centered project to a generic reference manager

able to be integrated with document preparation systems other than LaTeX. BibTeX

was to be replaced as the underlying file format, and instead be simply one export

format among many.

However the project never caught hold and rather than switching work to the Bib-

Desk 2.0 module the participants, other than the project founder, largely continued

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 47

to tweak BibDesk 1.0. It was not the case that there was significant tension about

this, but the reality was that it was hard for the rest of the project to change tack

and focus on BibDesk 2.0, even though the participants generally agreed with a need

for a re-write and did contribute some small testing and work on the BibDesk 2.0

module (which remains in the BibDesk code repository). I managed to build the 2.0

project a number of times, but the functionality was low compared to the 1.0 module

and therefore I could not adopt it for day to day work.

Instead work has progressed on the BibDesk 1.0 module in smaller steps than that

imagined for 2.0. Nonetheless the developers eventually achieved most of the features

planned for 2.0; such as a vastly improved group system, a very flexible templates

system and the ability to store more than one file per entry and to use file aliases

instead of full paths. The project achieved this through small additions over time,

retaining the existing structure of the 1.0 software and even the reliance on the plain

text BibTeX file format.

3.5 Findings

This section presents findings related to the three sensitizing concepts of the study

and the overall research questions of this dissertation.

Motivation

Participant observation enables the researcher to report on issues that are hard to

capture in other ways. This section describes my introspective understandings of

issues related to motivation in the BibDesk project. While I cannot speak for the other

developers I have not seen behaviors or discussion which would tend to contradict

these findings.

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 48

I was motivated to participate in BibDesk by two over-arching drivers: a desire for

software that served my needs and a desire for learning. As described above BibDesk

was useful to me in my day to day practice, and during that practice I came to truly

understand the phrase “to scratch an itch” (Raymond, 1998). Day to day use of

the software reminds the developer of elements which do not work as they would

like; the elements literally get in the developer’s face, interrupting their workflow and

continually starting the developer down the path of thinking about how to fix them.

It was my experience many times to be taken from my academic writing work into

jotting down thoughts or poking at the BibDesk source code to think about how to

resolve an aspect of BibDesk that was showing up during my work. This continual

prodding in the course of daily life is an extremely effective motivator, and the instant

gratification of available source code is not to be underestimated as an involving and

motivating factor. Perhaps one could even say that procrastination from “real work”

created opportunities for working on BibDesk.

By contrast my motivation for learning was more periodic, surfacing irregularly

and driving activity only in patches. Firstly, and importantly, one must acknowledge

that I was motivated by a desire for a field site and for academic career reasons. Yet

this motivation faded into the background, surfacing strongly when my other research

or reading on FLOSS intersected with experiences in the BibDesk project. From time

to time I was motivated to learn about the Apple libraries, Cocoa and Core Data,

but these are vast topics and this was not greatly sustaining. My failure to learn

sufficiently to implement the PDF metadata supports this finding. For me, at least,

while learning was a motivator it was less important and less constant than the daily

prodding of software use.

Motivation also played a substantial role in day to day task work in the BibDesk

project; the organization of work affected my motivations and vice versa. For example

it was often the case that a small piece of successful work, such as my Container

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 49

column, lead onward to other successful, small, pieces of work, in a reinforcing cycle.

For example, in my completion reporting email2 from the Container episode, I wrote

“BTW, are we meant to be using [pub stringByRemovingTeX] for display in the

tableview? . . . ” which indicates that my attention had now been caught by a new

issue in the course of the work.

By contrast if I was blocked in my activities I found this consistently de-motivating.

For example if the Sourceforge CVS system was down—sadly a too common occur-

rence for a period of time—I lost that minute to minute impetus to try something in

the code, similarly if the CVS tree was in an unbuildable state (which happened, but

only rarely).

The BibDesk 2.0 episode illustrates this and one other finding. The entire develop-

ment group encountered this during the BibDesk 2.0 push, as small feature extension

work slowed while the group waited for the 2.0 framework. The group’s plans in this

period were far more explicit than at any other time: the project founder was to build

the 2.0 framework and meanwhile the other developers were to tidy up bugs in the

1.0 module. It was assumed that the project founder would ‘come through with the

goods’ and so others did not ‘hack on’ the 2.0 plans, deferring their feature expansion

plans. As the time to a working 2.0 extended, eventually momentum for features

overcame this and individual developers, while paying lip service to 2.0, began to

add features to the 1.0 module again. Eventually 2.0 came to only be mentioned in

passing, as the 1.0 module advanced past features originally planned for it.

Interaction during a work task was motivating, particularly if it came quickly,

while my attention was still focused on the topic. Sometimes this took the form of

a quick, offhand suggestion which eased one’s progress through a work task. Yet

it was interesting to me that a lack of feedback was not particularly demotivating,

2http://sourceforge.net/mailarchive/message.php?msg name=abfcbca38becde478dcceac

8412f7095%40syr.edu

http://sourceforge.net/mailarchive/message.php?msg_name=abfcbca38becde478dcceac8412f7095%40syr.edu
http://sourceforge.net/mailarchive/message.php?msg_name=abfcbca38becde478dcceac8412f7095%40syr.edu
http://sourceforge.net/mailarchive/message.php?msg_name=abfcbca38becde478dcceac8412f7095%40syr.edu

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 50

certainly not as much as being blocked in my work. A response was read as positive

feedback, but the absence of a response is harder to read; it might simply indicate

that the person is sleeping, on vacation, hacking hard on another project or otherwise

attending to their “real life”.

Coordination and Dependencies

My experience and observation of BibDesk considered in the light of my growing un-

derstanding of the coordination and dependency literature gives rise to three findings.

Successful work was shorter

Firstly, my successful work tasks, and many tasks I saw completed, were relatively

short, extending only over a matter of days, rather than weeks. Conversely my

failures, and others I saw (including the 2.0 push), were longer, taking place over

weeks, even months. On one hand this is obvious; uncompleted tasks continue, yet

the eventual outcome of longer work was much more likely to be abandonment than

completion.

Absence of planned reliance

Secondly, my work in BibDesk was my own and was accomplished without planned

reliance on other developers. It was never the case that tasks were allocated, or that

I made a bargain beforehand with another developer to work together to complete

a bug fix or implement a feature. I do not mean that my work was not improved

or sped up by interactions with others; it often was. Indeed many times my rough

code was integrated and polished by others, just as I sometimes fixed typos etc. Yet

these interactions were spontaneous and unplanned, welcome when they occurred and

basically unnoticed when they did not.

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 51

Of course it is true that I relied on code provided by other developers and every

single activity in the project relied on the code originally provided by the project

founder and all the code in the repository. Yet this did not feel like reliance on that

person; after all they could not remove the code and while it was sometimes helpful

to have the author explain code in email, given enough time one and a debugger one

could usually figure out how it worked.

Deferring work as a strategy

Thirdly, I came to understand that, given the constraints of time and skills, much work

in BibDesk was deferred. By deferred I mean that it was eventually accomplished, but

sometimes months or even years after it was first proposed, when changes in circum-

stances provided the time, energy or ability. My earliest discussion3 on the BibDesk

lists, in June of 2003, speculated about being able to subscribe to and automatically

parse the publication lists of fellow academics. The project founder and I discussed

the desirability of this; indeed one of BibDesk’s less used features was the ability

to publish a set of publications as an RSS feed (a semi-structured machine readable

format used for blogs). Yet implementing the ability to subscribe to publication lists

required quite a number of things to fall into place; from giving BibDesk the ability

to read web-pages, to finding standard enough formats to providing a suitable UI.

The project founder deferred this feature for over 3 years, until the very start of

2007. He returned somewhat unexpectedly after a long hiatus from BibDesk develop-

ment and provided a patch that implemented the ability to subscribe to pages with

associated BibTeX, including Google Scholar results. In the past year another devel-

oper had implemented the idea of Groups of references, including those grouped by

author, or keyword and so on. The project founder used this infrastructure to layer

3http://sourceforge.net/mailarchive/message.php?msg name=7394DD78-A02E-11D7-AFC1-

0003931E45D0%40mac.com

http://sourceforge.net/mailarchive/message.php?msg_name=7394DD78-A02E-11D7-AFC1-0003931E45D0%40mac.com
http://sourceforge.net/mailarchive/message.php?msg_name=7394DD78-A02E-11D7-AFC1-0003931E45D0%40mac.com
http://sourceforge.net/mailarchive/message.php?msg_name=7394DD78-A02E-11D7-AFC1-0003931E45D0%40mac.com

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 52

his “web group” in just a few days of coding; finally realizing the core of a desire we’d

discussed years before. As he provided this code he commented,4

I just hacked together a new group, the “Web” group - the idea is if Bib-

Desk is iTunes for your refs, then the whole web is the music store . . . It

was much easier than I expected it to be because the existing groups code

(and search groups code) was very easy to extend. Kudos - I wouldn’t have

tried it if so much hadn’t already been solved well. Thanks!

Deferred work is not work abandoned. I was forced to defer my plans for PDF

metadata, but the ideas remained available, on the mailing list, in publications and

on my blog. Eventually someone else did let me know that a library was available that

could do the job, and they, in fact, implemented the feature for a different project

(JabRef).

At a shorter-term level the Trackers play an important function in regard to

deferred work. Trackers provide a single, persistent web page for each issue. Provided

the issue is not closed by an administrator, this allows the project to remember the

past and allows comments to build up over time. The comments are sometimes

‘votes’ from others encountering the same issue, they are sometimes comments from

developers regarding attempts at solving it, or information about how other projects

solved such problems. The project, therefore, was not particularly concerned about

“outstanding” RFEs or even bugs (as long as they didn’t result in data loss); these

were memos on the board, saying ‘we’ll get back to it’ and they often did.

4http://sourceforge.net/mailarchive/message.php?msg id=DF0FB757-56BA-45D7-A1EA-

262EB7A5B3DC@mac.com

http://sourceforge.net/mailarchive/message.php?msg_id=DF0FB757-56BA-45D7-A1EA-262EB7A5B3DC@mac.com
http://sourceforge.net/mailarchive/message.php?msg_id=DF0FB757-56BA-45D7-A1EA-262EB7A5B3DC@mac.com
http://sourceforge.net/mailarchive/message.php?msg_id=DF0FB757-56BA-45D7-A1EA-262EB7A5B3DC@mac.com

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 53

The experience of organizing: Discovering episodic

individual work

The final finding to be reported here relates to the question of how to represent

organizing in the FLOSS context. The process of my integration with the BibDesk

project, as related above, was one of rapidly expanding interaction which moved

progressively into differing project venues; from the application, to the mailing lists,

to anonymous CVS and, longer term, to Trackers.

I came to appreciate many aspects of this infrastructure, I highlight only three of

them here, since they relate directly to the theory development in Chapter 7. They

are: selective transparency, opportunistic synchronicity and the largely individual

manner in which work unfolded in episodes. These are truly socio-technical phenom-

ena; they are not prescribed by the technology, rather social practices arise which

exploit—and are shaped by—features of the technology in particular patterned ways,

some of which are only clear as a result of participation.

Selective Transparency

It is often stated that FLOSS projects are completely transparent, everything is laid

bare for any observer to witness (e.g. Harrison, 2001). In some important ways this

is true, yet the transparency of the archives is selective. It is true in that FLOSS

projects make available far more records of their life than do other types of work.

They do so in ways that are a side-effect of their collaboration, their publication is

automatic and doesn’t require additional work.

Firstly, not all of the life of the project ever makes it to the archives; some never

does. Secondly, different venues record different aspects of life and are more difficult

for the observer to penetrate with their understanding. Finally, that which does is

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 54

Figure 3.4: A great deal of the life of a project is private and not recorded in the
archives; this figure shows interconnecting private and public activities
and the artifacts they create.

PublicPrivate

Errors
Warnings

Code

Local
Binary

Application

Logs
Stack

Dumps

Variables
Stacks

Commit
Log

Annoucement
Email

Discussion
Emails

Release
Notes

Bug
report

Discussion
of Bug

Bug
Repository

Testing
Builds

from CVS

Public
Release

CVS
Check-in

Coding

Compiling

Debugging

Public
Release

Binary
Release

Source
Release

Private Public
CVS

Check-out

Local
testing

archived in particular ways, using archival technologies which impose themselves on

the reader, simultaneously exposing and hiding parts of the project’s life.

The archives of a project record only what the participants in the project wish

to make public; as a participant one is quite conscious of what is public and what is

private. This can been seen on many academic mailing lists when a participant acci-

dentally replies “in public” rather than “in private” and quickly publicly regrets this.

Figure 3.4 shows two interacting cycles in development—one public, one private—and

the artifacts they produce.

Much of my actual working time on BibDesk was not at all visible to the other

developers or project participants. They are able to see emails, tracker posts and

CVS checkins if my work is eventually successful, but not the many aborted efforts

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 55

along the way. Further much of my time spent working on BibDesk was never visible,

since it did not result in working code. Final check-ins did not reflect the difficulty

of preparing them.

Similarly much “project time” is spent reading or watching the various project

venues, an entirely private activity, revealed in records only if one replies. As Lakhani

and von Hippel (2003) confirm, over 98% of time spent in user support forums is

reading, rather than writing responses which become visible.

Not all project venues are equally available; some are more difficult to penetrate

and to understand than others. Consider my own trajectory. I began with the

application and release notes, progressed to the develop and user mailing lists, then

to read-only CVS and to Trackers. The mailing lists, as email, are the most familiar

to outsiders who are likely already participating in many other lists. For more recent

projects, and younger potential participants, Forums provide this familiar entry point.

CVS, by contrast, is obscure and technically intimidating; I still do not understand

all the ins and outs of some of the operations, like branch merging. Yet CVS commits

and diffs are commonly read and understood by developers, using both the CVS

log messages, the lists of changed files and edits to special files, such as a project

README file.

Finally archives are presented through technologies that subtly alter their interpre-

tation, making being part of a project quite different from observing it in retrospect.

For example, I read the BibDesk lists, including CVS log updates, in an email client,

not in an email archive. This has at least two impacts. The first is temporal; email

arrives and is read at different times. This allows it to function as an attention indica-

tor, telling attentive project members that another participant is online and available

now. Secondly, email as viewed in a mail client has a limited time horizon; eventually

older threads are pushed off the visible list of emails by newly arriving ones.

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 56

One crucial result of these processes is that evidence about work is scattered

throughout the project’s archives. Work that proceeded cohesively for the partici-

pants, bound together by time, attention and topic, is presented differently in the

archives, artificially separated by venue, obscured by archival techniques and more

or less stripped of its temporal cohesion. As a participant one experiences work as a

whole; as an archive reader one must work extremely hard to reconstruct this work.

Seeing work through archives

It is important to separate three structures of inter-relatedness in the archival record.

These structures are Discussions, Tasks and Sessions. By Discussions I mean the pat-

terns of interpersonal call and response; visible most clearly within a single tracker

item or in email threads, where they are less well preserved. Here a sequence of dis-

cussion is evident, with contributions crafted to respond to previous contributions in

a way analogous to conversation. Discussions are almost always limited to individual

venues, rarely do they cross venue and thus archival lines (an uncommon exception

is moving a discussion from a user list to the developer list through forwarding).

The second structure is that of Task, by which I mean a pattern of evidence which

is linked by having been caused by work towards a specific change in the application.

Tasks result in meaningful changes to the shared output of the project. These patterns

have no respect for venue and archival boundaries because participants are focused

on their private cycle of development and turn to different venues as that private

cycle dictates.

Overlaid on both of these is a third pattern derived from the fact that software

work occurs when participants are sitting at their computers and that people, even

open source programmers, don’t sit at their computers all the time. Rather partic-

ipants participate in Sessions, temporal periods in which the participant’s attention

is turned to the project, whether that be reading and responding to project email,

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 57

actively pursuing a programming problem or reading (and perhaps editing) project

documentation. The length of time that participants spend clearly varies. For me

this varied from a quick 10 minute scan of project lists, catching up on interesting

threads, to Sessions approaching 8 hours, ended only by the real life, sleep and PhD

coursework.

On top of this, again, is laid a second type of temporal pattern caused by the

waxing and waning of a participant’s involvement in the project over periods of weeks

and months. The sources of these patterns are not as clear-cut or universal. For me

it was a question of what was occurring in my real life, whether that be coursework,

research work or travel. Further even when I had relatively normal availability of

near-free time, my commitment to the project varied. I think this was because my

use of BibDesk varied, peaking during writing periods, during which even if I resisted

instant gratification of heading to the code, I built up a set of annoyances or visions

of changes I hoped to make or encourage others to make.

Opportunistic Synchronicity

The participants in BibDesk did not plan to be co-present, to align their working

sessions temporally; yet from time to time the core developers seemed to overlap

and to take advantage of this situation. In my own work, as related above, when I

reached out via email I found quick responses to be motivating and to create a sense

of companionship, but not reliance.

The ability to take advantage of such opportunities and switch from asynchronous

communication to near-synchronous communication is supported by the temporal

flexibility of email, in particular. As a push mechanism, delivered to inboxes which

most participants are automatically checking regularly while working, sending an

email on a list functions not only as a communication channel but also as a presence

indicator. A quick response indicates that you too are present, have time to consider

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 58

the project and are interested in this particular Task. In this way a Discussion can

shift from an asynchronous mode where emails are fairly long, more akin to journal-

ing than conversation, to near-synchronous discussions proceeding in “turns” much

closer to face-to-face conversation. Crucially these shifts occur without requiring the

participants to change media, say to a telephone or IRC, and are archived in the same

way, allowing those not present to catch up during their next Session.

Yet because there is no pre-commitment to co-presence there is only a weak

expectation—perhaps a hope—that a quick response will catch the other partici-

pants still at their computers, still with their attention turned to project venues.

There is, perhaps, a hope of quickly sharing one’s work and getting input, but there

is little disappointment or discouragement if it does not eventuate; after all one does

not necessarily know why the others aren’t responding, they may well just be getting

some well deserved sleep. Near-synchronous, focused attention is “nice if it happens”,

but is simply additional and enhancing, not vital to BibDesk’s work.

Episodic individual work

For non participants, these features together obscure the manner in which work un-

folds in BibDesk. Work is accomplished during individual’s Sessions, and driven by

both Tasks and Discussions. Work is temporally and topically cohesive to the partic-

ipant, yet leaves traces scattered, and altered, throughout different archival venues.

Interpersonal interaction is almost always unplanned, often even incidental or acci-

dental, supported by the flexibility of the project’s media use, but not a fundamental

requirement of participation in a project. Work does not stop if interaction does not

appear. My understanding of the project was that very little, if any, work involves

more than a single developer doing programming work, although other developers

may provide incidental support as the main developer works through their self-chosen

task. Other types of activity in the project, like user support, were similarly skewed

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 59

towards contribution from individual developers, rarely requiring input from more

than one developer.

The findings discussed above summarize the learnings from the BibDesk partici-

pant observation that are relevant to the research questions of this dissertation and

are summarized in Table 3.3, below.

Pilot Study: Types of Collaboration

To confirm that my understanding of episodic individual work in BibDesk was sub-

stantial and not simply an idiosyncratic reading, I re-examined the archives of the

BibDesk project for an entire inter-release period, drawing on my emic understanding

of the organization of work.

Manually, I collected all the archives of the BibDesk project for a single inter-

release period. I chose BibDesk 1.1.2 which was released on 1 July 2005. I had

spidered Sourceforge to obtain the mailing list, but I manually collected all other

venues, copying and pasting Tracker items, for example, into a working file.

My primary goal was to reconstruct the activity that participants performed dur-

ing the period, by resorting the archives from their media-based locations and group-

ing them as episodes linked by the activity that seemed to give rise to them. I did

not restrict my interest to episodes resulting in changes to the codebase, and so also

included episodes of user support and non-production focused developer discussion.

I began with Trackers that were closed during the inter-release period, since closing

a Tracker indicates completed work (or a rejection of work), seeking relevant evidence

in CVS and on the mailing list. I then turned to CVS checkins, working with both the

log messages and, from time to time, the code changes themselves. As I discovered

relevant communications I cut them from a working copy of the original archive, and

pasted them into a file for an episode. Finally I turned to the mailing lists, developer

first then user, and tried to group the remaining messages.

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 60

I then worked to summarize the documents, turning them into a single sentence

description of work, separated by a vertical distance in the file, to approximate their

separation in time. I then turned the episode into a sequence of initials indicating

the actors identity, separated by a gap (. . .) if the event occurred more than 8 hours

after the last. I then identified the overall role of the actor as either a developer or

a non-developer, based on my personal understandings of their long-term role. I did

not base that classification on their particular role in the Episode, nor on whether

they had CVS check-in privileges or not.

Table 3.1: Sample BibDesk Episodes

Name Kind Pattern Devs Synch?

1 bst macros RFE-fixed U1-. . . -AM-AM-. . . -AM-. . . -AM-. . . 2 Yes
-AM-. . . -CH-AM-CH-CH-. . .
-CH-. . . -CH-. . . -AM

64 volatile bug-fixed AM 1 No
34 preview crash bug-not fixed U1-AM-. . . -CH-AM-. . . -AM 2 No
38 macro defs feature imp AM-AM-AM 1 No
53 german capitals user support U1-AM-U1-U2-AM-U3 1 No

In this way I found 60 episodes, with summary strings as shown in Table 3.1. I

used this data to confirm the understandings outlined in the chapter above.

This case study fell early in my theory development process, when my concepts and

questions were not as well defined as they are later in this dissertation. Further the

manual nature of the archive organization did not lend itself to recoding. Therefore

the quantitative summaries can only weakly capture some of the understandings

outlined above and fully developed later in this study. Nonetheless, as shown in

Table 3.2 all but one of the episodes involved one of the three identified developers,

58% involved only a single developer and 40% involved more than one developer. Fully

46% (29) of episodes had near-synchronous (within 8 hours) interaction between two

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 61

participants, but only a few of those involved near-synchronous interaction between

two developers, only 13% (8) overall.

Table 3.2: Patterns of developer involvement in BibDesk

Pattern Count %

Zero developers 1 2%
Single Developer 35 58%
Multiple Developers 24 40%
Total 60 100%

It is important to note that this analysis is different from the more structured

and focused analysis of Fire and Gaim to be reported in Chapter 5; it is primarily

a systematic check for my participant observation results reported above and only

secondarily a pilot for the work to come. Firstly all forms of activity in the project

were included, not just activity resulting in substantive contribution. Secondly, the

roles of the participants were defined overall, not based on their actions during an

episode. A later review confirms that often one of the three participants identified as

a developer—based on their lifetime contribution to the project—was not acting as a

developer in the sense of producer within some of the multiple development episodes

reported above.

3.6 Case study Conclusions

The work in BibDesk was not alone, but neither was it like teamwork. “Working in

company” seems a closer description; it was companionship rather than co-labor. My

experience and my pilot systematic archive study indicate that the work in BibDesk

was, far more often than not, individual work, but that it took place with a supportive

audience, albeit one that was often otherwise busy but could, from time to time, come

through with timely support.

CHAPTER 3. DISCOVERY: BIBDESK PARTICIPANT OBSERVATION 62

Table 3.3: Participant Observation Findings

Finding Justification

Motivation
1 I was motivated primarily by my day-to-day use of the software Introspection
2 Participation was sometimes stress-relieving procrastination from “real-work” Self-critique
3 I was also motivated by learning but this came and went Introspection
4 The experience of work affected motivation Introspection

(success and rapid interaction was motivating; failure was demotivating)
Coordination and Interdependency

5 Successful work, my and others, was shorter, days not weeks Observation
6 There was almost no planned reliance on other people’s time Observation

(no allocation of tasks, few pre-announcements, few requests)
7 Helping behavior was unplanned and opportunistic Obs. & Intro.
8 Difficult, but desirable work was deferred and sometimes made easier by changes Observation
9 Trackers, due to their longevity, were used as memos for deferral Obs. & Intro.

Experienced Organization
10 The life of the project was given coherence through three types of structures: Introspection

– Sessions: short periods of time at the computer where attention is on the project
– Discussions: Call and response patterns within a single venue (e.g. Email threads)
– Tasks: Work directed towards a specific goal of changing the application

11 Tasks left documentary evidence throughout the venues of a project Archive study
12 Different venues have different archiving affordances which affect interpretation Archive study
13 Much individual activity, especially during development, is not archived Intro. & Arch.

My experience in BibDesk also revealed the layering of software, as well as the

common deferral of work. My motivational introspection was in synch with the

literature on FLOSS motivations reviewed in the previous chapter, but introduced

the suggestion that motivation is affected by blockages in production.

As with any case study, however, and particularly one that draws so heavily

on personal experience, a scholar must be conscious of the possibility that one’s

experience is particular. I tested some of my own experiential understandings within

BibDesk with a systematic pilot archival study of the work of the whole project, but

the possibility remains that the practices and experiences in BibDesk are unique to

that project and therefore are not, as this dissertation argues overall, linked to the

socio-technical nature of FLOSS work. Therefore the dissertation now turns to efforts

to focus and replicate these findings before formalizing the combined findings in a

socio-technical theory of FLOSS organizing. First however, we return to the literature

to assist in the design of the replication study and to deal with the experienced

episodic organization of BibDesk.

Chapter 4

Literature Review II

This chapter introduces literature which updates the Input-Process-Output frame-

work introduced in Chapter 2 to cope with long-standing and episodic teams, and

to provide a solid conceptual basis for attempting to replicate key findings through

archival case studies. As is usual with qualitative and experiential research, much of

this literature was encountered during the participant observation and already influ-

enced the findings. It is presented here for the sake of narrative clarity. It is hoped

that the previous description of the BibDesk study will provide a concrete grounding

for understanding the relevance of the literature, as it did for the author.

In the overall structure of the dissertation-as-document this chapter updates the

IPO approach to teamwork and shows how these developments in the literature sup-

port the findings in Chapter 3 and point to an empirical strategy for replication.

Most importantly, however, this chapter helps develop a solid conceptual basis for

attempting to replicate key findings through archival case studies, by reviewing the

literature on coordination and interdependency.

63

CHAPTER 4. LITERATURE REVIEW II 64

4.1 Time and the IPO approach

One of the key findings in Chapter 3 was the manner in which organization was

experienced as an overlapping set of Tasks, Discussions and Sessions. It was a far

more complex, yet still structured, experience of organization than that of the early

IPO framework presented in Literature Review I (Chapter 2). This section shows

how the conceptualization of teamwork within the IPO approach has developed so

that it matches these experiences better. This has occurred as the researchers using

this approach came to consider teams in naturalistic environments existing over long

periods of time, rather than short lived or single task teams.

Time plays a role in teamwork frameworks in two senses. The first is a consider-

ation of time scales and the second a consideration of the development and change

in teams over time. It is the first which is most relevant to investigating the research

questions of this dissertation.

Zaheer et al. (1999) summarizes the point that just as there are “levels of analysis”

(e.g. individual, group and society) analysts ought to consider differing time scales.

Analysis is possible at short time-scales such as intra-day or intra-task and at longer

time scales (over months, years and organizational missions, rather than per-task).

Over different timescales, different aspects of team performance will be relevant.

The developers of the IPO models had pre-figured this understanding in their

work, but it didn’t become fully expressed until McGrath (1991) described an emerg-

ing view of naturally occurring teams:

Many of the groups we meet in everyday living are not like [groups in

experiments] at all. They have pasts together, and they expect to have

futures. Yet they have variable membership from one occasion to an-

other. They seldom exist in isolation; they are embedded within larger so-

cial aggregates—communities, organizations, neighborhoods, kin networks,

and departments. . . . Even their pursuit of production goals is often not

composed of repetitive, unrelated tasks, as in successive “trials” of an ex-

CHAPTER 4. LITERATURE REVIEW II 65

periment but, rather, of complex sequences of interdependent tasks that

compose a larger “project.” And they often have more than one such

project going at the same time.1

The logical combination of these two understandings of time is the introduction of

an episodic conceptualization of teamwork (Kozlowski et al., 1999; Marks et al., 2001;

McGrath, 1991; McGrath and Tschan, 2004). This conceptualization proposes under-

standing work in teams as a recurring, overlapping and developing flow of episodes,

each with their own unique inputs, processes and outputs. Development is possible

because earlier episodes alter both the inputs and the received practices. Episodes

too, can be viewed at different timescales, with day-to-day episodes being quite short

but, as the time period of analysis is expanded, together they can be seen to make up

longer episodes (McGrath and Tschan, 2004). Episodes also breakdown the unitary

idea of a team, since each episode might only include a small subsection of all the

team members. This is true of the Tasks identified in the previous chapter; while

there is some smallest unit of Task, there are also Tasks that include other tasks,

such as resolving issues during the preparation of a release.

Ilgen et al. (2005, p. 519) in a recent review article argue,

Conceptually, team researchers have converged on a view of teams as com-

plex, adaptive, dynamic systems. They exist in context as they perform

across time. Over time and contexts, teams and their members contin-

ually cycle and recycle. They interact among themselves and with other

persons in contexts. These interactions change the teams, team members,

and their environments

1The meaning of project and tasks in this quotation are slightly different than in their use in this
dissertation. McGrath reserves the word “team” for describing the abstract organization, and uses
the word “project” to describe an outcome focused organizing structure, within the life of the team,
which is made up of Tasks. In contrast this dissertation does not distinguish between a project and
a team, following the participant’s own usage. We believe that this highlights the extent to which
participant’s perceive the shared outcome of the application, rather than an abstract team-ness, as
the central organizing feature of FLOSS organizing.

CHAPTER 4. LITERATURE REVIEW II 66

Figure 4.1: Groups work over time in repeated episodes of Input-Process-Output. A
more realistic picture would depict multiple overlapping episodes, each
with effects on the other, and would acknowledge that different sub-
sections of the team are involved in only some of these episodes.

Ilgen et al. go on to argue that the idea of IPO should be replaced with “IMOI”,

standing for “Inputs, Mediators, Outputs, Inputs”. Process is replaced by Mediators

to also include “emergent (psychological) states”, along with the processes of taskwork

and teamwork (see Chapter 2). The Input category is repeated to emphasize the

cyclical nature of teamwork over time.

McGrath and Tschan (2004) provide the most sophisticated conceptual model of

teams in this tradition, aiming to draw together the IPO approach with the action

theory of Tschan and von Cranach (1996) and the complex systems approach of Arrow

et al. (2000) into what they call Groups as Complex Action Systems (CAST). This

is an approach that emphasizes multiple layers of embeddedness, both in levels of

analysis (members in groups in contexts) and in time-scales of analysis (operational

processes, developmental processes and adaptive processes) which all interact to shape

the life of a team.

CHAPTER 4. LITERATURE REVIEW II 67

In terms of operational processes, they argue that “group task performance is

highly patterned, but not in a form reflecting a single fixed sequence of phases”

(such as, say, intelligence-design-choice) but argue for a hierarchical view in which

project (or goal) choice is matched with an initial choice of implementation practices

(planning) which may operate unchanged if they perform, or maybe be altered if

they do not perform. At the micro-level work, “unfolds in recurrent cycles (orienting-

enacting-monitoring-modifying)” which are, in turn, monitored periodically at the

higher/longer levels in which they are embedded.

There is no doubt that this framework is complex and dense, with the telescoping

levels of embeddedness presenting a significant challenge to empirical research. Ilgen

et al. (2005, p. 519) argue accordingly that, “The empirical research on teams in

organizational contexts is also moving in the direction of increased complexity, but

this work still has a way to go to match developments in the conceptual domain”.

Recently scholars interested in analyzing activity of online groups from their

archives have also focused on this idea of episodes as a fundamental unit of analysis.

Annabi et al. (2008) base their argument on Miles and Huberman (1984), rather than

the literature presented above, and define episodes as “events, processes and prac-

tices that occur over time and have a beginning and an end”. They argue that these

“Episodes contain the behaviors that lead to particular outcomes of interest to the

researcher.” They argue that these episodes permit “systematic comparison of their

occurrence, nature, antecedents and consequences”.

These conceptualizations are important to this dissertation because they suggest

an empirical approach which is rooted in an understanding of work in teams as unfold-

ing through multiple smaller groupings which overlap each other in time and involve

only some members of the team. This shift in the perception of organization from

macro-structures to the micro-structuring of work is mirrored in the work on coordi-

nation and dependency. In this way the empirical studies presented in Chapter 5 are

CHAPTER 4. LITERATURE REVIEW II 68

a contribution to bringing empirical research closer to the increasingly sophisticated

conceptualizations developed above, bringing a focus on everyday taskwork to explain

teamwork processes usually studied in isolation.

4.2 Dependency and Coordination

As discussed in Literature Review I (Chapter 2) there are a myriad of ways to un-

derstand organization. The BibDesk case study, by identifying Sessions, Tasks and

Discussions and suggesting links with motivation, provides an emic guide to under-

stand the aspects of organization likely to be linked to motivation in FLOSS projects.

This suggests a focus on dependencies as a crucial feature of organization. Further

it is necessary to ask how the largely individual work experienced in BibDesk could

be combined into a well functioning whole, which suggests a focus on coordination,

which is itself closely linked with the concept of dependency. This points to a consid-

eration of how, in practice, individuals interact and how their contribution and work

relates to each other. As the literature reviewed in the following section suggests,

this can be framed by asking about the manner in which individuals and their work

are dependent on each other and how their work comes to be coordinated, producing

a single, cohesive, shared output in the form of a software application.

Interdependency is a fundamental concept in organizational theory and has been

extensively studied. This section attempts to summarize the existing literature on

interdependency and it is structured in three parts:

1. What is interdependency (nature)?

2. How is interdependency related to performance (impact)?

3. What are the sources of interdependency (causes)?

CHAPTER 4. LITERATURE REVIEW II 69

What is interdependency?

Thompson (1967) is a remarkably persistent touchstone in organizational science.

It describes interdependence between organizational units of a large firm, such as

accounting and finance, or design and production. Thompson’s description turns on

a definition of interdependence that is linked to risk and contingency: dependence

exists when there would be a negative outcome if an event not under the control of

a single unit was not to occur in the required way. Given the potentially negative

outcome, units in an interdependent system would have to readjust their activities

to avoid or lessen the overall impact of other’s activities.

Using this definition Thompson describes a hierarchy of interdependence. At the

top is pooled interdependence which exists when two organizational units have to

contribute to a common outcome. If one unit doesn’t perform as needed then the

outcome for the organization (and both units) might be negative, “failure of any one

can threaten the whole and thus the other parts” (p. 54). Pooled interdependence

doesn’t require actual direct interaction; the interdependence is because the two units

share an outcome (usually profits).

If two units have to directly interact for good overall performance to be achieved

then Thompson describes two, more specific, types of interdependence: sequential

and reciprocal. Sequential interdependence exists when the activities of one unit are

required to follow the activities of another unit, if overall organizational performance

is to be achieved. If the activities of the units play out over a longer time-scale,

then they might need to “mutually adjust” their ongoing activities to assure over-

all performance. Thompson names this “reciprocal interdependence” which occurs

when “each unit involved is penetrated by the other” (p. 55). Thompson makes the

point that each successive type of interdependence includes the earlier. All reciprocal

interdependencies include sequential interdependencies and both are types of pooled

interdependency.

CHAPTER 4. LITERATURE REVIEW II 70

To put this in terms of FLOSS organization, consider the case of resolving a bug

experienced by a particular user. The user cannot get the desired performance unless

the bug is fixed by a developer, but the developer cannot begin fixing the bug unless

the user provides a decent bug report. For the project to perform both must act

in certain ways (pooled), the bug reporter must act first, followed by the developer

(sequential) but in a longer term sense the bug reporter is both dependent on the

developer having created the application, and is likely to provide better reporting if

they monitor the developer’s efforts (and vice versa) suggesting that this relationship

might also be described as reciprocal.

Van de Ven et al. (1976) builds on Thompson’s three types of workflow interdepen-

dence by adding “team interdependence” which they distinguish because, “in team

work flow, there is no measurable temporal lapse in the flow of work between unit

members, as there is in the sequential and reciprocal cases; the work is acted upon

jointly and simultaneously by unit personnel at the same point in time” (p. 325).

Thompson may have simply considered this to be a characteristic of work within

a unit, given his concern with macro-structures in organizations, nonetheless for a

study of team level organization this is an important contribution.2

Malone and Crowston have examined organizational dependencies in greater de-

tail, presenting a wider ontology of relevant objects, drawing on “more precise no-

tions” from Artificial Intelligence (Malone and Crowston, 1994; Crowston, 2003).

Rather than simply examining dependencies between units, they introduce four ele-

ments: goals and tasks, actors and resources. Dependencies arise between combina-

tions of these. Actors, specifically, are interdependent as a result of the tasks they

are involved in being dependent on each other. They call the management of these

2It is usual in reviews of coordination to refer to Mintzberg’s 5 or 6 types of coordination here,

but since Mintzberg Mintzberg (1979) (and March and Simon (1958) before that) do not build their

models of coordination on an explicit analysis of dependencies they are omitted.

CHAPTER 4. LITERATURE REVIEW II 71

dependencies coordination, creating a definition that has been very frequently cited

(Crowston et al., 2006b).

Dependencies are examined in more detail by examining combinations of goals,

tasks and resources. Goals are dependent on tasks which can, in turn, be decomposed

into sub-tasks. Further detail is achieved by the observation that tasks have both

pre-conditions and effects and examining permutations of relationships between tasks

and resources (including actors).

The simplest dependencies in Crowston’s taxonomy are between single tasks using

or producing single resources (Crowston, 2003). Interdependencies between actors

are likely to arise from more complex configurations such as a task using multiple

resources (Shared Resource), or a task requiring one resource and producing another

(Producer/Consumer).

The interfaces between tasks can have certain requirements (Malone and Crow-

ston, 1994), such as “usability” which is the requirement that the output from a task

be suitable as input for the task seeking to use the resource. Another interface re-

quirement might be transportation or notification, where a resource required as an

input needs to be in a certain location and the next task (or the actor on which the

next task depends) notified of its availability.

To follow our bug fixing example, the user and the developer are interdependent

only because they are linked through the goal of fixing the bug, which can be de-

composed into two tasks: producing a bug-report and fixing the bug. The user, and

her experience, is a crucial resource for the bug-reporting task, which produces a

bug-report. The second task, fixing the bug, depends on the first because it has a

bug-report as its pre-condition. Further the bug-report must be useable: it must

allow the replication of the bug. The bug-fixing task depends on three resources:

the bug-report, the developer and the codebase. The effect of the bug-fixing task is

a patch on the source code. This patch could be seen as a pre-condition to a fur-

CHAPTER 4. LITERATURE REVIEW II 72

ther task, such testing the fix, which would itself be dependent on other resources

including, possibly, the original reporter as a tester.

How is interdependency related to performance?

What is shared in the conceptualizations above is that dependency matters because it

creates risks for the ability of the organization to perform by meeting its overall goals.

If dependencies do not “line up” as required then the tasks cannot be performed as

needed and the performance of the organization will suffer. This is the essence of the

“shared outcomes” condition that helps to define when an interdependency exists; if

an actor’s (or an organizational unit’s) payoffs are affected by the way other’s actions

integrate with their own, then there is a dependency.

Therefore the objective of analyzing dependency in the literature is to elaborate

a “theory of fit” between tasks and team processes and practices (Perlow et al.,

2004; Schoonhoven, 1981). An appropriate fit leads to good performance, while a

inappropriate fit leads to poor performance. These theories are therefore a type of

contingency theory, in which a single solution is not always the best, but different

circumstances call for different solutions. In particular, practices that are called

coordination are considered the primary element that should be in alignment with

the requirements of dependency if organizations are to perform well.

In Thompson this alignment was understood as a one-to-one correspondence:

With pooled interdependence, coordination by standardization is appropri-

ate; with sequential interdependence, coordination by plan is appropriate;

and with reciprocal interdependence, coordination by mutual adjustment is

called for. (p. 56)

Malone and Crowston’s more detailed analysis argues that dependencies pose

problems, such as resources being available for tasks, or that inputs for tasks are

usable and in the correct place at the correct time, which if not solved will impact

CHAPTER 4. LITERATURE REVIEW II 73

performance. These problems they term “coordination problems” and the techniques

applied to solve them are called “coordination mechanisms” (Malone and Crowston,

1994).

Crucially, the additional features of dependencies that they describe cause different

types of coordination problems and thus they are able to move beyond a one-to-one

correspondence to argue that “there are many different coordination mechanisms

that could be used to address the same coordination problem” (Crowston, 2003, p.

7). If the mechanism applied is successful it is able to manage the dependencies

appropriately and thereby accomplish coordination. The fit between the mechanism

and the problem is good and thereby organizational performance is achieved.

The literature reviewed to this point tends to assume two things: firstly that inter-

dependencies are inherent in the task and that organizations will gravitate towards the

most appropriate mechanism as a result of market forces, essentially poor performance

will expose bad fit, and organizations will change, either through active management

or an evolutionary process where poor performers cease to exist. As we will see

below, more embedded studies of dependency and coordination argue for a different

perspective in which interdependency is not inherent and is itself an organizing choice,

made in conjunction with choosing an appropriate mechanism.

What are the sources of interdependency?

As discussed above, the majority of work on interdependence focuses almost exclu-

sively on task as the source of “requirements” which must be fitted by organizational

structures. So ingrained is that understanding that the definition of task is often

expanded to include all aspects of the overall organizational challenge. This section

first examines the literature which has questioned the structural or fixed nature of

task and which opens up the possibility that organizational interdependencies occur

for reasons other than an unchanging task. The review below describes this as a

CHAPTER 4. LITERATURE REVIEW II 74

move from task as “pure structure” to a view of interdependence as an emergent

phenomenon of practice.

Malone and Crowston (1994) decouple the analysis of structural dependancies,

including those from tasks, from the analysis of processes capable of satisfying the

dependancies. They retain the idea of fit, but argue that it can be achieved in many

ways, albeit remaining within constraints imposed by the task.

This decoupling of task and process creates room for the observation that teams

are able to successfully achieve similar tasks in different manners and raises the ques-

tion: why do some teams choose to approach a task in a particular manner?

Scholars addressing this question altered the purely structural role of task by ob-

serving that interdependence in performing a task can be altered, even for identical

tasks, in a number of ways (including instructions and arrangement of outcome re-

wards) and teams with either low or high interdependence can still perform at high

levels, given alignment with features other than task.

Shea and Guzzo (1987) studied the performance of teams where a manager chose

between promoting task interdependence and outcome interdependence. They found

that

teams exercised substantial discretion in determining their patterns of in-

teraction at work . . . we regard task interdependence as malleable, espe-

cially when the group’s work is not highly constrained by technology . . .

different patterns can prove equally effective, managers may want to give

groups latitude in this area.

Wageman (1995) intervened in the workplace to produce groups with different lev-

els of interdependence in their work by varying outcome interdependence, i.e. making

rewards contingent on the work of others. The underlying idea is that if rewards are

dependent on group performance, then teams will tend to work in an interdepen-

dent way. However she found that the tasks could be successfully performed both

by teams displaying interdependence and by those working individually. This result

held provided that there was fit between the outcome interdependence and interde-

CHAPTER 4. LITERATURE REVIEW II 75

pendent performance, which is to say that groups that were rewarded as teams but

functioned as individuals didn’t perform well (but also didn’t shift to functioning in

more interdependent ways).

Rico and Cohen (2006), studying online groups, argue that

task interdependence is a structural characteristic and at the same time,

that the same task may be carried out with differing levels of interdepen-

dence . . . the technology used imposes a certain structure on the task in

terms of the required level of interdependence, but it is no less true that

the same task may be performed at different levels of interdependence.

In Rico’s experiment task interdependence was created by instructions, but the

shape of the outcome was constrained to be identical. Despite this flexibility their

conclusions retained the same ‘required by the task’ language, but did introduce

the idea of a necessary fit with communication technologies: “the performance of

[virtual teams] depends on the fit between the level of interdependence required by

the task undertaken by a team and the degree of synchrony provided by available

communication technologies” (p. 269).

This line of research questions whether, in fact, tasks themselves are programmed

with interdependencies; it seems that teams and individuals have substantial latitude

by which they can alter interdependence and still effectively perform a task, especially

if other features of the production environment are allowed to vary and the groups

are allowed to choose their approach.

Certainly there remains an expectation that there are limits to this flexibility.

For example if a researcher artificially creates a short-term “split information” task

and then requires it to be performed without any communication at all one would

expect low performance. Perhaps, though, given enough time a single individual

would be able to learn the needed information and thus complete the task with high

performance and low interdependence. Of course almost all such laboratory tasks are

set-up to have built-in time limits. This is an assumption that makes sense if one is

CHAPTER 4. LITERATURE REVIEW II 76

focused on organizational environments where efficient use of resources is paramount,

but it is an assumption nonetheless.

Finally there are scholars examining coordination by studying the details of actual

practices in naturally occurring teams over time. Wageman and colleagues (Wage-

man, 1995; Wageman and Gordon, 2005) provide a useful bridge from the “structural

but interpreted” work described above and the practice investigations discussed be-

low. They separate structural from emergent causes of interdependence. They outline

four sources of “structural task interdependence” (p. 688, their emphasis):

1. How the task is defined to the group,

2. Rules that managers establish about process (instructions and expectations),

3. Physical technology of the task (production line), and

4. Managerial allocation of resources necessary for the work.

They argue, though, that these factors can be dominated, without loss of perfor-

mance, by group characteristics which make interdependence an “emergent property

in social systems” (p. 688). In particular they examine the effect of the group’s values

on the manner in which they arrange their work. Groups with shared egalitarian val-

ues arranged their work with higher interdependencies and cooperation, while groups

sharing meritocratic values arranged their work with lower interdependencies and

cooperation. Both were successful; and significantly more so than groups without

shared distributive values. In earlier work Wageman (1995, p. 177) also argued that

congruence between dependencies and team structure may only lead to good perfor-

mance, “as long as the work itself is motivationally well designed, the groups well

composed, and the individual members competent.”

They argue that the dominance of “socially emergent” interdependence over “struc-

tural” interdependence can occur in teams where “the structural features of the task

CHAPTER 4. LITERATURE REVIEW II 77

typically are either ambiguous or are left unspecified” and cite knowledge work, con-

sulting and new product development as examples.

This work opens up the possibility that the necessary fit between task and ap-

propriate interdependency and coordination mechanisms is related to task, but only

in so much that some tasks have firm requirements, while others are flexible enough

to be able to be performed in different modes, allowing teams to choose their levels

of interdependence without performance penalties. It seems clear that in a volun-

teer environment undertaking software development there are very few “structural”

sources of interdependence, leaving interdependence to “emerge” in a manner which

best fits these other contextual constraints.

This work shares the understanding that interdependence in task performance

emerges through an episodic process of structuration, where initial tendencies (struc-

tural, individual, contextual) are strengthened by repeated successful practice and

“the patterned behavior of groups becomes normative and process solidifies into struc-

ture.” (Wageman, 1995).

Researchers employing a practice lens to explore in detail the work of teams have

also observed this pattern of structuration, a co-formation of reinforcing practices of

interdependence. Perlow et al. (2004) examined software engineering teams in three

international locations pursuing similar tasks. They observed quite different patterns

of interdependence (Manager centered, Expertise centered and Team centered) but

similar levels of performance. They argue that, in each environment, practices have

emerged that fit each other as well as the (highly flexible) “nature of the task”, the

external environment (e.g. national cultures) and individuals, “the types of people

who are hired”. They turn to structuration, with its mutual reinforcement to explain

how this fit co-evolves. They argue that action to improve performance requires “not

just understanding the patterns of interaction themselves but also the organizational,

institutional, and cultural contexts that enable and constrain them” (p 534).

CHAPTER 4. LITERATURE REVIEW II 78

Faraj and Xiao (2006) studied work in a medical trauma unit, which they char-

acterize as “contextualized and non-routine” but also are “high velocity” and must

“avoid errors”. They identify the importance of improvised ways of coordinating,

based on relationships, but also argue that “formal modes of coordination do not

melt away in favour of more improvised ways of coordinating”. While there are

structures that are important, the group is largely responding to “the situation” at

hand and actively re-planning their work, continually choosing patterns which may

or may not be interdependent in execution.

The point is clear: as researchers have studied groups undertaking less structured

and repeated tasks in organizations that persist for longer periods of time the “struc-

tural requirements” of tasks become relatively less important in predicting the overall

level of interdependence likely to be seen in the group’s activities. Rather the liter-

ature highlights an evolving fit between the preferences of the individuals involved,

affordances of available technologies and patterns of interdependence.

To those two determinants ought to be added the circumstances of the individuals

involved. One of the key aspects of the resource context of FLOSS teams is that they

are emergent and voluntary, in the sense that their participants are not assigned,

but must be attracted. They are not rewarded for their contribution with external

rewards provided by an organization, such as money. Rather, as discussed above in

the review of literature on motivation in FLOSS teams, they derive their rewards,

whether intrinsic or extrinsic, from the work itself. Furthermore the project’s utilize

a technological infrastructure that has been intentionally developed to support work

in these circumstances. The need to synchronize these factors ought to shape the

type of interdependence and thus organization to be found in FLOSS taskwork.

CHAPTER 4. LITERATURE REVIEW II 79

Interdependency in Software Engineering

Interdependency also plays an important role in a separate tradition of literature

from Software Engineering which considers the role of modularity in a code base.

Modularity is a property of software code whereby different sections of the code are

low in their interactions or “interpenetration”, usually called “coupling and cohesion”.

For example highly modular code does not share ‘global’ data structures and draws

on functions only through a small well-defined set of high level function calls, known

as an interface.

It is argued that effective parallel development is achieved through such modular

code, and that it leads to higher quality code with fewer defects (Baldwin and Clark,

2001; Langlois, 2002; von Hippel, 1990; Parnas et al., 1981). This has recently been

examined and argued as a factor for successful open source software as well (Conley,

2008). In short, a good design ensures that people can work relatively alone, since

they are only optimizing and improving their own sections.

The received wisdom in Software Engineering is that the structure of an orga-

nization determines the structure of the software which it produces. This is known

as Conway’s law, “organizations which design systems . . . are constrained to pro-

duce designs which are copies of the communication structures of these organizations”

(Conway, 1968) with a common expression being “If you have four groups working on

a compiler, you’ll get a 4-pass compiler”3. (Notice that the “law” specifically refers

to designs). Recently more detailed empirical studies in Software Engineering have

begun to critique these understandings, drawing on more nuanced literature from

organizational science (e.g. Herbsleb and Grinter, 1999).

The question of the role of modularity in the codebase in relation to the sorts of

independent work patterns observed in BibDesk is a valid one and will be returned

3http://en.wikipedia.org/wiki/Conway%27s Law

http://en.wikipedia.org/wiki/Conway%27s_Law
http://en.wikipedia.org/wiki/Conway%27s_Law
http://en.wikipedia.org/wiki/Conway%27s_Law

CHAPTER 4. LITERATURE REVIEW II 80

to in the Discussion (Chapter 8), along with questions of the impact of motivations

and resource context.

4.3 Literature Review II: Conclusions

The literature review in this chapter helps to focus the understandings generated

in the BibDesk case study and suggests an empirical focus on episodic, repeated

taskwork as the type of answer to RQ1 which is most likely to play a role in the

answer to RQ2. The dissertation now turns to describe a systematic replication of

the central findings of the BibDesk case study using the conceptualization of work

presented in this literature review.

Chapter 5

Replication: Fire & Gaim Archive

Study

5.1 Introduction

This chapter presents a systematic study of work practices in two FLOSS projects.

It was designed to replicate key findings of the BibDesk participant observation and

provides additional illustrative data for the theory developed in Chapter 7. The key

findings of the BibDesk case study were that work is largely individual and often

productively deferred. The study reported in this chapter replicates and focuses

these findings through a systematic classification of tasks extracted from archival

evidence. The analysis is based on a combination of emic understanding gained during

the BibDesk study, the literature reviewed in Chapter 4 and immersive reading and

iterative organization of a full set of project archives. A set of concepts emerges from

this process and are used to build a classification of types of collaboration in the

projects studied.

81

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 82

Scope and specific research questions

While the BibDesk case study considered all types of activity in the project, this study

focuses on only work which leads to changes in the shared outputs of the projects. For

the very large part that is work that leads to changes in the codebase that produces

the application, but it also includes changes to documentation on how to use the

software. This choice is a trade off; it allows easier comparison of like to like in the

systematic results, but clearly reduces coverage of the project’s activities. For example

it loses activities such as user support, design discussions between developers that

do not result in implemented changes and other assorted non-production activities.

Nonetheless it focuses on activities that are literally vital to the projects; at their

core FLOSS projects are different from other online communities because they are

production communities and without developing code they quickly die.

The scope of this study is limited, therefore, to the patterns identified in the

previous chapter as Tasks, as opposed to Discussions or Sessions, and then only to

a particular—albeit it core—type of Task. This chapter therefore has more specific

research questions than the dissertation overall:

1. What patterns of collaboration are found in task-level production activity in

Fire & Gaim? Does individual taskwork dominate?

2. What evidence is there for deferral as a strategy?

Method

The method employed for this study was both qualitative and systematic, taking

particular aspects of my experience in BibDesk and re-deploying them in a focused

study of the comprehensive archives of the projects studied in this chapter.

It is a feature of FLOSS work, as reported in Chapter 3, that it is almost entirely

experienced through documents. In the offline world archives can be copious but

are at best partial records of work because much occurs face to face and creates no

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 83

record. In FLOSS projects, by contrast, because documents are the medium of work,

archival documents provide a far more comprehensive record. Even years later, such

archives give the qualitative researcher, skilled in the interpretative milieu through

his own participant experience, access to the project’s work in a manner very similar

to that which the project members had.

This access, of course, is limited in the ways described in Chapter 3 and care must

always be taken to recognize the impact of the mechanisms of archiving, (what Hill

(1993) calls “sedimentation practices” in historical archival research) as well as the

limitations resulting from archives only capturing the public aspect of the full FLOSS

working environment. For example it would go too far to claim that reading the

archives alone, without interviews or other probing, gives insight into the motivations

of individual participants (even real-time participation arguably doesn’t do this). One

cannot engage in real-time probes, either through email or interviews, to assist one’s

interpretations. The claim is not that this archival study is an ethnography, but more

simply that it an uncommonly rich qualitative archival study.

In any case, happily the challenge of this chapter is far simpler than that of

deeper ethnography. The challenge is to recover the set of tasks which the experience

in BibDesk held to cohere and organize the work of FLOSS participants. In this task

two key issues noted in Chapter 3 arise. The first is the fragmentation of evidence

about work into multiple separate archives (different email lists, trackers etc). The

second is the compressed and flattened experience of time. Rather than the FLOSS

project winding in and out of one’s “real life” and thereby periodically re-connecting

and recalling the issues “on deck”, an analyst reading archives experiences time as

far more linear and regular. This means that particular attention must be paid to the

time-stamps and, in particular, the gaps between working Sessions and the Bursts

they create (see Chapter 3).

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 84

These two challenges require that systematic qualitative work to make sense of

archives must be exhaustive (covering all archives) and iterative; initial organizing

categories must be re-considered as more evidence comes to light, and the interpre-

tation of already read evidence can be altered by evidence read later. An analyst

is assisted in this because the narrative and temporal coherence of the tasks is a

constant pull towards discovering the underlying and generative task structure. This

may seem to put the cart before the horse, but the task is analogous to unpacking

a mobile from a box; gentle shakes and gravity allow the existing structure to assert

itself over the original jumble.1

In this way a careful, systematic, iterative and exhaustive reading and organization

of the project archives by an analyst attuned to the working practices of FLOSS

projects has the potential to answer the relatively simple research questions of this

chapter. This method, of course, comes with limitations which are dealt with in

detail below together with their potential impacts on the results and suggestions for

improving their robustness in future research.

Case Selection

The two projects selected for this study are Fire and Gaim. Their selection is justified

because they provide good cases to replicate the findings of BibDesk. This replication

logic—rather than a logic of sampling or coverage—is recommended for case-based

research (Yin, 1994). For this dissertation, based as it is on a socio-technical argu-

ment, the key risk in the BibDesk study is that the observed practices were either

purely idiosyncratic to BibDesk, or are purely social, as opposed to socio-technical in

nature.

1A mobile is the type of sculpture associated with Calder and Duchamp of many parts connected

by wires intended to be hung from the ceiling. Similar structures are often hung above baby’s crib,

their balanced, gentle motion entertaining the child.

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 85

Fire and Gaim were first encountered by the author again through personal need.

I was beginning to use IM more and had recently moved countries to begin my PhD.

A feature of IM usage is that different protocols/networks tend to be dominant in

particular social and geographical groups, most likely due to strong network effects.

To interact which all of my friends I had to be connected to multiple networks,

which meant having three or more IM applications open on my computer. This is

inconvenient and confusing, so I looked for alternatives and discovered Fire, since

I was using Mac OS X at the time. I discovered the application during its most

the successful phase, in 2003. I was never a developer for Fire, but I did follow

the user and developer lists while I used the software. Gaim was later selected as

a useful comparison project and this comparison has been used in other content

analytic research which, through continual reading of the archives, provided a broad-

stroke understanding of the projects (e.g. Scialdone et al., 2008). This research was

conducted at the same time as the participant observation in BibDesk and, together

with other FLOSS projects I was involved in, provided informal comparisons.

Since the overall argument is one of replication it is sensible to choose cases which

are similar enough to BibDesk on the features thought to matter for independence, as

discussed in Chapter 4: Resource context, Task and Infrastructure. Fire and Gaim are

both community founded projects which, at the time of the study, had no institutional

structure and the work of which was performed entirely by volunteers. They have no

foundations or other formal existence. The demographics of the participants are not

known other than as they are revealed through the communications, which suggests

that many participants were students—as with BibDesk—although on the whole they

seem younger, including what appear to be high-school students. That said, other

contributors are clearly older and do not self-identify as students. The participants

are distributed globally, although they are focused in North America and Europe.

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 86

The projects are as close as possible to each other, as well as BibDesk, in terms

of technical infrastructure. They are both hosted almost exclusively on Sourceforge.

They both used CVS at the time of the study (and just like BibDesk switched to

Sourceforge’s SVN after it was offered). They both use Trackers of basically the same

types (bugs, enhancement requests etc), although Gaim uses more to track plugins

and patches. They both have mailing lists roughly divided into development and user

focused venues, although Gaim employs a Sourceforge-hosted user Forum rather than

a users mailing list. Both have had sundry non-sourceforge venues, but in the period

selected for the study had their collective life focused in Sourceforge hosted venues.

The overall tasks of Fire and Gaim are almost identical: they both build a multi-

protocol instant messaging client. Such clients provide a unified interface to the many

competing standards and networks for instant messaging: Yahoo, MSN, AOL, Jabber

and IRC. They are both user interface heavy, end-user software that seeks to solve a

personal productivity challenge in that they rescue their users from having to have

multiple clients, one for each network, open and to separately manage lists of their

contacts in each. The domain of the software, therefore, is not identical to BibDesk,

but it is very close; both are personal productivity tools intended for everyday use on

personal computers. This is in sharp contrast to software intended for organizational,

development or periodic use (such as an ERP system, a programming library, or a

special event management system, like Open Conference System). Again, as with

BibDesk, neither of the projects spawned a commercial product.

Furthermore, as will become clear below, the projects both rely, as did BibDesk,

on underlying libraries built in a surrounding project ecosystem. They therefore have

the challenge of bringing these together in a UI as their primary programming task.

The complexity of that integration task is probably higher for Fire and Gaim than for

BibDesk, since they must abstract the different and overlapping functions of the vari-

ous IM protocols. Gaim, perhaps, is slightly different in that that project also took on

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 87

the task of building and maintaining an underlying library for the AOL instant mes-

senger network: libfaim (eventually called libprpl, pronounced “lib-purple”). Both

projects draw on a UI framework which provided an interface to underlying operat-

ing system and basic networking functions, GTK+ for Gaim and Cocoa for Fire (the

same library that BibDesk used).

The selection of these two projects is not without tradeoffs. By focusing on

similarity, rather than difference, the selection lowers the ability of the research to

generalize to other kinds of FLOSS projects. For example all three of the studied

projects are around the same size, in terms of developer numbers. This, therefore,

may hide interesting differences on this score; perhaps very small teams are more

likely to work together, or perhaps very large teams are more likely to break up into

smaller teams, where more collaboration may occur. There is also a trade off in terms

of domain. Each project concerns an application which is primarily designed to be

used by individuals and requires little knowledge of the organizational systems in

which they are embedded. This is in contrast to, for example, Enterprise Resource

Planning systems where the knowledge to implement an organization’s processes in

software are likely to be scattered throughout organizations, perhaps leading to a

greater need to work together on separate tasks, or at least to plan them in sequence

and articulation. Nonetheless, if the results from BibDesk do not hold even in similar

projects then there is little chance they will hold more broadly, so it is with similar

projects that the work of replication must begin.

Period Selection

In terms of project success, Fire and Gaim exhibit trajectories with both similarities

and differences. Both projects begin small, limited to a single minority platform

(Fire to Mac OS X, Gaim to Linux). Initially both are extremely successful, relative

to most FLOSS projects, and rise to be the number one multi-protocol client on

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 88

Figure 5.1: Fire and Gaim have comparable participation through early 2004; after
this Fire falls away, while Gaim moves from strength to strength

their respective platform for a period. Both were considered innovative and exciting

FLOSS projects. They have similar numbers of registered developers, in the top 2%

of Sourceforge projects at between 10-15. Overall Gaim always has a large user base,

as proxied by downloads and has more activity across its various community project

venues, although levels of CVS activity are similar.

After around 1.5 to 2 years, during 2004, their trajectories diverge, with Gaim

moving onward to further and larger scale success and Fire falling away, eventually

declaring themselves finished, although leaving all the project infrastructure in place

in case others wish to take up the mantle. The remaining Fire developers decamped

to another Mac OS X multi-protocol instant messaging client, AMSN. These effects

are shown in Figure 5.1, Figure 5.2 and Figure 5.3.

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 89

Figure 5.2: Fire and Gaim have comparable numbers of registered developers through
May 05, after which Gaim climbs rapidly

Figure 5.3: Gaim always had more users and interest than Fire, although the installed
base of their initial platforms (Mac OS X and Linux) was comparable.

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 90

The similarities and differences can be clearly seen in Figure 5.1, Figure 5.2 and

Figure 5.3. For this reason this study chose to concentrate on a period for which the

projects are most broadly comparable, especially in terms of community participants

and registered developer numbers. The periods were also selected to be comparable

in terms of length and size of work undertaken in the period. This criteria resulted in

selecting the periods Fire 0.32.a and Gaim 0.59.2. The inter-release period for Fire

was 56 days (16 October 2002–11 December 2002), while for Gaim it was 61 days (24

Jun 2002–24 Aug 2002). The nearby calendar periods help ensure that the projects

are facing similar challenges during the period, since part of the work of the team is

responding to changes in the underlying protocols and to the availability of libraries

and other code in the open source instant messaging ecosystem.

5.2 Data

The raw data for the study was collected to be as comprehensive as possible. Data

was obtained from four sources: the OSSmole project (Mailing lists) (Howison et al.,

2006), the Sourceforge Research Archive at Notre Dame (Trackers, Forums and Re-

leases) (Greg Madey (ed), 2007; Gao et al., 2007), XML export from the Sourceforge

SVN for each project, and by using the ViewVC browser for details of changed files

and the changes themselves. The entire archives for the projects were collected—not

just the single chosen period—which allows these periods to be placed into context.

The data collection was substantial, but falls short of fully comprehensive, in

part for reasons of public/private cycles discussed on page 54 (Chapter 3). These

shortcomings must be considered in interpreting the results. For example there is

evidence that both teams used IRC (Internet Relay Chat) as well as IM (Instant

Messaging) between the developers and as an additional general project venue. For

example for a short period of time (outside the time considered in this study) Fire

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 91

held synchronous meetings over IRC, called “Fireside Chats”. This is unsurprising

given that the projects were developing IRC and IM clients. It was not possible to

collect this data because neither project archived it; indeed it is often considered

inappropriate to archive these transient conversations (although not unheard of).

However there is little evidence that the interactions in these venues played strong

roles in the conduct of task work, for example IM or IRC discussions are not referred

to in SVN messages or mailing list discussions. Indeed, given the difficulties the

projects had with the efforts of the IM networks to block them out, it is perhaps

not too surprising that they sought to communicate in other media. Nonetheless this

remains a limitation of the study.

Each archival record has its own format and records aspects of the work in sub-

tly different ways. For example participants are identified in different ways (email

vs username) and time stamps refer to different time zones (UTC vs EST, since

Sourceforge is based in Virginia). The data sources, even when obtaining data from

OSSmole and SRDA came in different formats. For example there was direct SQL

access to OSSmole data but only web-form SQL access to SRDA. Since both projects

had moved their source code repository to SVN, the CVS data was available only

after it had been imported to SVN, which introduces some artifacts. SVN/CVS data

was obtained through an XML export from Sourceforge’s servers.

In order to organize the data for analysis a data schema was designed which al-

lowed the raw data to be represented in sufficient detail so as not to lose the differences

between venues, but at the same time to highlight the conceptual similarities (see

below) that the various archives sometimes hid due to their individual data represen-

tations. This was accomplished using RDF (Resource Description Format), together

with some features of OWL (a semantic web classifying language). This data integra-

tion was quite a challenge and is described as needed below, as well as in (Howison,

2008). It is relevant that the identifiers for the individual data elements in RDF are

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 92

URIs, and I was therefore able to use the actual URLs (http://sourceforge.net/. . .)

as the identifiers in the database, seen in footnotes throughout this dissertation.

Over 158,000 documents were collected for the full lifetime of the two projects.

The overall lifetime media usage of Fire and Gaim is shown in Figure 5.4. Of partic-

ular note is the dominance of Trackers and Forums over Mailing Lists in the Gaim

project as well as the similar absolute levels of CVS activity, particularly in the first

half of Fire’s life time (pre mid-2004) (although this is obscured somewhat by the 5x

difference in activity in Gaim than Fire).

The documents for each project were extracted from the database by Java scripts,

outputting each Venue in a separate text file, indexed by their URI, with the relevant

messages grouped by Threads (or Tracker Items) and then chronological order. The

files for each project were arranged into a folder and that folder opened in an edi-

tor designed for programming which allows easy browsing and searching through a

hierarchy of text documents. This arrangement allowed flexible traversal of the doc-

ument set, without the need to write an interface to the database. Further, because

the data were represented by actual URLs, it was almost always possible to return

to the relevant web page on Sourceforge and check for any additional useful details

or processing errors.

Discovering and refining sense-making concepts

The research in this chapter did not begin in a situation of tabla rasa, rather the re-

search began with concepts arising from a combination of the participant observation

experience of BibDesk together with the literature discussed in Chapter 4. These

understandings, however, were refined as I began to made sense of the data collection

and became more familiar with the working practices of Fire and Gaim.

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 93

Figure 5.4: All Communications over time for Fire and Gaim. Note the relatively
low relative use of email in Gaim, due to heavy use of Trackers. In both
projects code commits are relatively stable over the life of the project,
while others rise, causing a decline in relative terms, while the projects
are successful. The bars under the time axis approximately show the
selected periods.

0

1000

2000

3000

4000

2001-02 2002-02 2003-02 2004-02 2005-02 2006-02

Tracker

Submission

Tracker Comment

Email

Code Commits

0%

20%

40%

60%

80%

100%

2001-02 2002-02 2003-02 2004-02 2005-02 2006-02 2007-02

0

1000

2000

3000

4000

2000-03 2001-03 2002-03 2003-03 2004-03 2005-03 2006-03

Tracker Submission

Tracker Comment

Discussion Forum

Email

Code Commit

0%

20%

40%

60%

80%

100%

2000-03 2001-03 2002-03 2003-03 2004-03 2005-03 2006-03

Fire: All communication archives (Note later start and no Discussion Forum)

Gaim: All communication archives (Note relative heavy use of Trackers)

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 94

The data collection strategy described above brought all the data together and

allowed me to re-experience it in the order it happened, gradually sorting out ways to

make more systematic sense of the data. The work began in an open mode, similar

to that described for BibDesk on page 59, examining archival records and seeking the

narrative sense contained in them. This immersion was contemporaneous with the

literature review described in Chapter 4.

There were four over-arching sense-making tasks undertaken as part of this qual-

itative analysis. The first was to organize the diverse archives in a way that they

could all be presented in temporal order, overcoming the ‘silos’ into which the dif-

ferent records came to be stored. The second task was more interpretative, it was

to recover the individual tasks which provide narrative cohesion to the work. The

third task was to understand the different types of contribution to the outcomes of

the tasks. Finally patterns in these contributions were used to generate a classifi-

cation that speaks directly to the research question of this chapter. The analysis

undertaken was iterative, which means that interpretative tensions at a later stage

motivated changes in the earlier organizing constructs. This will be demonstrated by

a number of examples.

Organizing the archives

The first task was to take the archival records and arrange them in such a way that

they could be organized into temporal order. The chosen method was to automati-

cally parse surface features and to store the records in a combined database, so that

they could be output in temporal order. However since different archival records have

different “sedimentation practices” (Hill, 1993) which might affect later interpreta-

tion, it was thought important to retain all the metadata.

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 95

The information modeling process was undertaken at first by using modeling tools

from the world of relational databases, chiefly by drawing Entity-Relationship dia-

grams, and then writing code to organize small sample datasets.

The challenge is identifying the right level of abstraction to preserve the differ-

ences, while working with the similarities between records. Another challenge was

preserving the original identities of the archival records, in case I later needed to

examine the document in context.

Modeling this data using traditional relational database schemas proved to be

quite difficult. This is primarily because the central similarities derive from viewing

them in a class hierarchy. This is to say that, for example, an email message and

a forum message, as well as their attributes, are linked by moving to a higher level

of abstraction rather than relational linkages. I do not mean to argue that the data

could not be represented in a relational database, simply that the process of modeling

the data in this way was not contributing to an intuitive understanding of the data.

For this reason I turned to modeling techniques most associated with semantic

web research, known as RDF (Resource Description Format) and OWL (Web Ontol-

ogy Language). These techniques naturally encourage a class hierarchy view of the

data, as well as using URLs for identifying objects, which met the additional criteria

of maintaining a strong link to the original data sources. Finally the schema of qual-

itative research evolves along with an analyst’s understandings, and the RDF format

allows one to generate new Objects and Properties simply, without changing existing

work. I worked not with the XML serialization of RDF but with a serialization known

as Turtle, which is a plain text format allowing me to manage data entry in a simple

text editor, see Figure 5.5. I was also able to use convenient templates (‘tab triggers’)

to enter repetitive portions quickly.

Working first with Email and Forum messages, then with Trackers, then with

Release Notes and then with SVN log messages, I developed a vocabulary of classes

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 96

Figure 5.5: A screenshot of the interpretative apparatus. This is a plain text edi-
tor. On the left is a hierarchy of files, including the Documents from
the archive, organized by archive type and date. The middle shows a
document written in Turtle format, showing my understanding of a small
Task. Note the various memos.

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 97

and properties linking them which encompassed the whole data set, while maintaining

the individual specificity of each archived document. The highest level constructs are

shown in Table 5.1: Events, Documents, Participants and Identifiers.

Table 5.1: Archive Concepts

Concept Definition Example

Event An Event, occurring at a particular time, causes Documents to be archived.
–Sending an email, releasing a version

Document Archived content
–Email content, Tracker comment content, Release note

Participant A distinct individual involved with the project
–James Howison (the person), Sean Egan (the person)

Identifier A string identifying a Participant
–James Howison (the name), james@howison.name (an email address)

The archival records are all linked at the highest level because they are generated

by some Event. This Event, such as sending an email or submitting a Tracker Com-

ment, or even releasing a piece of software, causes a record in the archives. It occurs

at a particular time. The Events I was particularly interested in were Events which

generated textual evidence, and this evidence I called a Document. Events are associ-

ated with particular identifiers, like Sourceforge user names or email addresses which

refer to the real people participating in the project. I therefore created a new class

of entity, a Participant, which can be associated with one or more Identifiers. Each

concept has a specific sub-class for maintaining the more specific aspects of a record,

thus an EmailEvent is a sub-type of Event, it is associated with an EmailAddressI-

dentifier and a RealNameIdentifier and its content is a EmailMessageDocument. By

inspecting each type of archive I was able to normalize the times of the Events and

therefore output the data in an absolute temporal order.

An example of the iterative sense-making undertaken even at this stage is the

separation of Event from Document. This is necessary because some Events gen-

erate more than one Document, particularly the Release Notes. To understand the

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 98

archival record one must understand the process as enacted by the participants. When

preparing a release a developer (the Participant) creates an updated binary of the

application and fills out a form at Sourceforge. This form has three parts: the appli-

cation binary for upload, a set of Release Notes and a Change Log. For some projects

the Release Note and the Change Log are identical, but others use the Change Log

to list changes, and the Release Note as a more discursive announcement. When the

developer presses upload (the Event) this creates three separate Documents. In the

archival record the Participant in this case is identified by their Sourceforge User ID,

the Identifier.

Throughout this process I was immersing myself in the data, reading the content

of Documents, returning to the original records and using my FLOSS experience to

place myself in the shoes of the participants and understand how their participation

lead to these archives.

Recognizing Tasks

The central cohering concept identified in the BibDesk case study is that of the

Task. Participant observation found this to be an interpretative concept that enabled

participants to make sense of the flow of activity in the project. It is also crucial for

the research question of this chapter, since they provide the unit of analysis inside

which one is looking for collaboration and/or individual work. The interpretative

work described in this section was informed both by the participation in BibDesk

and the literature presented in Chapter 4, which understand the work of a team

to be multiple, overlapping and embedded (McGrath, 1991; McGrath and Tschan,

2004).

Thus an analyst attempting to recognize Tasks faces difficult decisions about the

level of inter-relatedness and embedding. These are often associated with the time

scale of analysis (Zaheer et al., 1999). For example it is quite natural and useful to

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 99

consider each release of the software a Task for the group, and all of the contributions

towards that release part of that “Release Task”. Similarly when the participants are

working towards a release it is reasonable to consider the last few days a push to

release as a single Task that has components at a lower level as bugs are fixed or new

features polished.

For the research question of this study, however, it was more useful to resolve

Task at a fairly low level, but not to consider every single change to CVS to be its

own Task, because clearly some are related to the same intended outcome. Finding

a consistent, yet meaningful level at which to draw the Task boundaries was crucial

to this study.

If the participants truly are using Tasks to provide coherence to their work, then

there should be evidence of that produced by the participants themselves. There

are indeed two good sources of this information. The first is the Release Notes,

or Change Log, published with a new release. These documents communicate to

the users what has changed during an inter-release period. They are prepared by

whomever is uploading the release, since they have to be pasted into a web form on

the Sourceforge site. They are the first source of outcomes for recognizing Tasks,

providing outcomes for 65 of the 109 tasks (≈ 60%).

However this process, coming as it does only at the end of the release period often

summarizes too much, pulling together similar events “other UI tweaks”; after all it

is not an accounting of the project’s work, but a communication to the application’s

users. Happily both Fire and Gaim also use a README document, which develops

through the inter-release period and forms the basis for the release manager to pull

together the release notes. The README is shown in Figure 5.7. It is often the

case that developers, having gotten a feature to work or having fixed a bug will alter

the README file (through a CVS check-in) to communicate to other developers that

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 100

Figure 5.6: The Release Notes show one view of the Tasks of the period. Note the bul-
let point division, the grouping headings, the developers initials following
the item and, in a few cases, links to Tracker items.

Version Number

Headings and Indenting

Bullet Points Developer Initials

Tracker Numbers

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 101

Figure 5.7: The README file is an evolving record of the Tasks, written by partic-
ipants as they provisionally complete work. This figure also shows the
archive of a CVS check in, including the log message, the list of changed
files and the ability to link to a detailed ‘diff’ showing actual changes.

Link to changed text

Right hand side shows
new text (in green), left
hand side would show
removed text (in red)

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 102

they consider the task provisionally complete. So the README file, or rather changes

to the README file, becomes a second emic source of Task outcomes, providing a

further 31 task outcomes (≈ 29%).

Finally, reading other archives in the context of the Release Notes and README,

makes it clear that not all work is considered worth adding to a README file, let

alone announcing in the Release Notes. In these cases an analyst has to rely on a

close reading of the CVS log messages, which are often very, very context dependent.

The participant observation experience in BibDesk showed that such messages are

literally “bashed out” while checking into CVS; they are additional, often annoying,

work for the developer and their readership status is unknown. Therefore an analyst

attempting to make sense of the archives must sometimes dig into the changes in the

source code itself, using the link as shown in Figure 5.7. This type of recognition

provided 10 Task outcomes (≈ 9%).

Therefore the identification of Tasks began with the identification of a Task Out-

comes by observing how participants themselves communicated the names and de-

scriptions which they use to make sense of their work. Participants, of course, also

understand the coherence of their work at various levels, as shown by the headings in

the README and Release Notes documents, shown in Figure 5.6. These headings

often evolve through the README file, or are added at release time, as a way of

organizing their sub-points. While these structures are interesting, this work pushed

towards the lower level descriptions of work, most simply by choosing the most in-

dented lines in the release notes.

This section of work generated two new sense-making concepts to be added to the

four outlined above: Task and Task Outcome. Task Outcome is the actual change

to the group’s shared outputs which occurs as a result of the work directed towards

it. Thus a Task is created as a container, anchored by its Task Outcome, into which

evidence about contribution towards the outcome could be placed.

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 103

I worked first through the Release Notes to create the first set of Task Outcomes,

generating RDF statements describing each and including interpretative memos, as

well as Task containers. At this stage it was obvious that some lines in the release

notes were fairly specific, while others had brought together many smaller tasks which

would later need to be broken out, based on finer grained evidence in the README

and SVN log.

Organizing Documents according to Task

Once the analysis had recognized an initial set of tasks, I began reading the Docu-

ments and examining them for evidence as to which Task the activity they represent

may have contributed. This process worked through the temporally ordered Doc-

uments and generated additional RDF statements that a particular Document was

relevant to a particular Task. This was accomplished by free text searching through

a full text output of the Documents, rather than searching directly in the database.

This approach was simpler than writing and running queries and enabled ne to exam-

ine Documents nearby in time quickly. The process worked primarily with keywords

from the Task Outcome, but also with synonyms and related concepts based on my

growing knowledge of the codebase as well as general programming knowledge.

I was aided in this process of discovering relevant Documents by a short script that

printed out the Tasks, their Task Outcomes and the Documents currently considered

relevant, allowing me to assess the temporal and narrative coherence of the Task.

Often this exposed logical gaps, such as a thank you message without evidence of

work, which gave me new ‘leads’ to search the Document collection. In the RDF

dataset (recall that this is a plain text file) I added an Object type which was a

DocumentRelevanceAssignment, which linked a Document with a Task, stated at

what time the assessment of relevance had been made and allowed me to record

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 104

a relevance memo which captured why I thought this particular Document to be

relevant.

For example, Fire Task 5 was generated from a line in the release note which read

“Chat windows scroll the upper scroll view when PgUp/PgDown are pressed. (nk)”.

As I searched for relevant documents I recorded an Episode Memo describing my

searching strategy, “Searched Scroll, and everything associated with nk, who is Nick

Kocharhook, or nkocharh”. This resulted in locating a set of Documents, including an

SVN message with the log message, “Chat windows scroll the upper scroll view when

PgUp/PgDown are pressed.” As I designated this as related I recorded a Relevance

Memo, “Clear svn connection; also this is an edit of the README file, which is

clearly the basis for the change notes (although not everything makes it into the

change notes)” (One can see my growing understanding of the role of the README

file here as well). I also included the immediately following SVN document, based on

a reading of the code changes. I continued to search for related discussion, such as

a bug report or email thread, but in this case did not find anything that discussed

scrolling or PgUp/Down.

All the time I was reading the Documents throughout the set, both assigned and

unassigned, and comparing them to the full set of Tasks seeking congruence and co-

herence. This process is the ‘shaking of the mobile’ described above allowing the

underlying structure to reveal itself, guided by theory and experience. The work was

iterative, sometimes frustratingly so, as new evidence generated interpretative ten-

sions which required either splitting or merging Tasks, and then re-working portions

of the Document assignments to accord with these new anchors. Such re-working was

memoed in the fields provided.

Often these discoveries involved time-scales of analysis and ‘unpicking’ the sum-

marization in the Release Notes. For example, in Figure 5.6 under the title of AIM

there is a note saying, “This is the BIG one! Oscar Support!” followed by a set of

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 105

indented notes. Initially I understood this as a single Task, the addition of a library

providing Oscar (a particular network protocol) support, together with a more de-

tailed explanation of what that meant. As I became more familiar with the data I

saw this differently, with the initial add of the library one task and each individual

bullet point becoming a separate Task. This decision was made because it better

made sense of the work; for example there was a substantial gap in time between the

addition of the library and work on individual features made possible by the library.

In particular some features of the library, and what they made possible, were only

grasped and worked on once the library had been in place for some time. The library

made them possible but was not put in place in order to achieve them.

Not all Documents were relevant to Tasks, as defined as work resulting in changes

to the shared outputs of the project. For example on the user list there are many

Discussions where users are seeking support in using the software, rather than re-

porting bugs or requesting features. Often the answers to this are relatively simple

and provided by other users. Sometimes, however, the discussions do lead to the

identification of a bug or the request of a feature which are linked to an eventual

change (a Task Outcome). These discussions were included as relevant to a Task.

The only Document type where it is reasonable to expect that eventually all

will be relevant to a Task is the SVN log messages, since they are directed linked

to changes in the shared output. I therefore identified these as an indication when

sufficient work had been completed. From time to time I ran a script which indicated

how many SVN messages remained outstanding, and concentrated on these. In a

small number of cases (only 10) these produced new Task Outcomes, which had not

been considered substantial enough to include in the Release Notes. Eventually all

the SVN Documents were assigned to Tasks, sometimes just made up of that one

Document. I then worked through the dataset, using the script which showed Tasks

and the Documents assigned to them in temporal order.

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 106

This phase of the analysis took close to four weeks of work, approximately two

weeks for Fire and two weeks for Gaim. By its conclusion I was confident that I

had made more sense of the Document collection than a casual reading of individ-

ual archival records; I was capturing my emerging understandings in an appropriate

format and memoing frequently. The latent structure of the data was asserting itself

and while alternative interpretative paths would have been possible, that structure

latent structure would draw interpretation towards it.

Recognizing contribution

At this stage the dataset consisted of Tasks, each with Outcomes and relevant Doc-

uments. Yet the research question calls for a deeper interpretative understanding

because it is about patterns of contribution. Documents provide evidence about

activities that contribute, but they are at best a delivery mechanism for the contri-

bution, and provide evidence about real-world activity. It was also becoming clear

that some Documents provided evidence about activities which were not directly as-

sociated with the Document and which were not evidenced by any other Documents.

For example it was not uncommon to see a thank you note in a SVN check-in, such

as Fire Task 3, where an updated Icelandic translation is checked in by jtownsend,

along with the SVN log message, “Icelandic localization update from Heimir Freyr”.

Here the Identifier on the Document (jtownsend) refers to the person that checked

the translation in, but the message clearly conveys the knowledge that that person

did not write the original translation. In fact it is clear that someone else (Heimir

Freyr) did and provided the translation to the developer doing the check-in in some

manner. I searched the archives to resolve this narrative tension but was often unable

to find evidence of that transmission, so one can only assume that it was transmitted

in a way not captured in the archives, perhaps by private email to the developer.

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 107

From the perspective of understanding patterns of contribution such tensions are

very important, since it is clear that, although there is only one Document, there

are two relevant activities by two different participants, albeit that they are playing

slightly different roles.

Addressing these issues and resolving this narrative tension requires a new con-

cept, which I called the Action. This is defined as the real-world activities contributing

to the Task Outcome. These are distinct from Events (which generate Documents)

and from Documents, which merely provide evidence about Actions. Actions are un-

dertaken by Participants, and these Participants can be identified by multiple Identi-

fiers. Recognizing the real-world people behind multiple Identifiers is also crucial to

the research question, since individual work could easily be understood as collabora-

tion simply because it is not realized that one individual is using two different email

addresses.

Having generated this concept I worked through the Tasks, reading each Docu-

ment in temporal order and created Actions as appropriate, memoing my reasoning

for doing so. Simultaneously I assessed the Identifiers associated with the Documents

or the content and created Participants to record who performed the Actions. I cre-

ated two sub-classes of Actions, ExplicitActions and ImplicitActions. ExplicitActions

were those where the Event and the Document provided direct evidence about the

Action, such as a regular SVN checkin. For these one is able to take the time the

Event occurred as the time that the Action occurred. ImplicitActions, however, are

interpreted from the content of the Documents and therefore one must assess a time

at which they likely occurred. For the most part one only knows that they occurred

prior to the Event, and so I simply assigned them a time milliseconds before the

Event. Sometimes, however, I was able to better locate them either through direct

evidence (“last week”) or through examining them in context and relying on narrative

coherence.

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 108

Recognizing Participants was relatively easy. For the most part one can rely on

data linking Sourceforge usernames to RealNames which are available in the Notre

Dame dataset (in the Users table). This, combined with free text signatures in

emails or Trackers (less common) lets one link between SVN commits and emails, for

example. In a few cases one has to rely on interpretative clues such as the first part of

an email address being the same as a Sourceforge username. For some participants,

particularly those in ImplicitActions, one has to create a Participant not linked to

a Sourceforge user account. The human experience with different forms of names

performs very well in these situations, where automated techniques (which were also

tried) had substantial difficulties.

Recognizing Actions from relevant Documents took approximately two weeks for

both projects. This iteration sometimes revealed issues with earlier assignments or

Tasks, which were corrected when observed. By this point I was quite familiar with

the dataset and the emerging interpretations.

The set of concepts generated to this point can be illustrated through three ex-

amples.

1. A request for a feature sent by email (where the feature was eventually imple-

mented)

2. A release of the software, and

3. A CVS log message that thanks someone other than the person doing the check-

in for their work.

An emailed request for a feature (which is eventually implemented) is the simplest

of our three examples. Here the content of the email is a Document, the author (and

requester) is a Participant, their email address and real name are Identifiers, and the

sending of the email is an Event. The requested feature is a Task Outcome (because it

was eventually implemented). The request itself is one of the Actions that contributed

to the Task Outcome. The full set of Actions that contribute is the Task. Note that

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 109

here there is a one-to-one-to-one relationship between the Event (sending the email),

the Document (the content of the Email) and the Action (making the request).

A release of the software is a little more complicated. A developer (the Partici-

pant) creates an updated binary of the application and fills out a form at Sourceforge.

This form has three parts: the application binary for upload, a set of Release Notes

and a Change Log. For some projects the Release Note and the Change Log are

identical, but others use the Change Log to list changes, and the Release Note as a

more discursive announcement. When the developer presses upload (the Event) this

creates three separate Documents. These Documents could contain evidence about

many different Actions contributing to many different Tasks (the changes to the ap-

plication themselves). In the archival record the Participant in this case is identified

by their Sourceforge User ID, the Identifier.

Just as the relationship between Event and Document can be one-to-many, so can

the relationship between a Document and an Action. This is the case in the third

example. A developer (the Participant) using his Sourceforge User ID (the Identifier)

checks in a new translation and makes a log message (conceptually these are two

separate Documents). The new translation itself is the Task Outcome (a change

to the shared output of the project). However the Log message indicates that the

developer doing the checkin did not write the translation himself, because he thanks

another for it. Therefore these Documents provide evidence for two separate Actions,

one by the developer doing the checkin and another by the Participant who wrote the

Translation. Both Actions are contributions to the same Task Outcome, therefore

they are part of the same Task.

For completeness it is worth noting that these concepts relate to the three orga-

nizing structures reported in Chapter 3: Sessions, Discussions and Tasks. Tasks has

the same meaning as before. Sessions indicate the material fact that participation is

bursty: it occurs in periods when the participant is awake, at a computer and paying

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 110

attention to the project. All the Events resulting in archived Documents, therefore,

take place during one of a Participant’s many Sessions, even though some Actions

might not (most do, but conceptually one could draw at a whiteboard or think in the

shower). Of course not everything done in a Participant’s Session is directed to the

same Task; developers often work on more than one thing.

Recall that Discussions are patterns of call and response in venues where this

is recorded, such as Email Threads and Tracker Items. A Discussion is therefore

a set of Documents. Discussions can sometimes contribute to Task Outcomes and

therefore their content often includes evidence for Actions. Further, a Discussion

often contributes to more than one Task Outcome, so a Discussion is not contained

within a single Task, but can “lie across” many.

Together these factors mean that even within a particular Task the Actions con-

tributing to the Task Outcome cluster in time, with dense periods and periods without

any relevant Actions. Sometimes the periods of time without any Actions can be quite

long (weeks, months, even years in some cases involving Trackers) but these gaps do

not mean that there are two Tasks, since all the Actions still contribute to the same

Task Outcome. The dense periods of Tasks might be called Bursts, although this

dissertation does not make use of this concept.

The careful reader will notice that the word ‘episode’ does not appear in this

discussion despite its prominence in the BibDesk case study and the literature review

in Chapter 4. Episode was not used because it could refer to several of the concepts

outlined above without being out of synch with the literature, including the definition

of Annabi et al. (2008). For example it could refer to Tasks, Discussions or separate

Bursts within Tasks, all of which are processes over time linking behaviors. One must

make the decision as to what type of episode one is interested in, for example Annabi

(2005) dealt with Episodes of learning and Heckman et al. (2006) dealt with Episodes

of decision making. In this case I was interested in episodes of production activity,

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 111

which I called Tasks, to emphasize that this is one, concrete, type of Episode and to

avoid confusion with Discussions or Bursts.

Recognizing types of contribution

An Action is something done by a Participant that contributed to changes in the

shared outputs of the project, where the shared outputs are usually changes to the

application or its supporting documentation. Therefore categorizing an Action is a

matter of asking “in what way did this contribute to the output?”

A classification scheme was developed based on my understanding of how work

gets done in FLOSS projects. The development of this scheme began during the study

of BibDesk presented on page 59, where I allowed myself open coding to generate

vocabulary to answer the question about the type of contribution (e.g. Glaser and

Strauss, 1967).

I then returned to the literature to examine a number of coding schemes which

were potentially relevant. For example I examined the literature on Speech Acts

and Conversation Analysis. I found these schemes to be too general for my specific

research question; they focus on general characteristics of speech and rely heavily on

divining the purpose of the speaker. I also examined schemes more closely related to

work processes, including the Dialogue Acts scheme of Winograd and Flores (1987).

This came closer, but was tuned mostly to situations of negotiation, and the data did

not seem to fit this scheme well enough.

I returned to the data and focused on inductively building relatively simple mod-

els of software production. I was influenced by two meta-models of behavior: the

waterfall model of software development and models of information seeking behavior.

The waterfall model is related to rational models of Intelligence, Design and Choice

(Simon, 1960) and posits five phases of software development: Requirements, Design,

Implementation, Verification and Maintenance. Information Seeking behavior argues

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 112

Figure 5.8: Inductive classification scheme for Actions

that behavior is driving by a need to close a gap where the seeker believes they do not

have enough information to proceed (e.g. Krikelas, 1983). I was also influenced by a

desire to focus on the act of programming, as opposed to surrounding and supporting

acts.

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 113

The inductive scheme that emerged is presented in Figure 5.8. The five categories

of contribution are: 1) Management work 2) Review work 3) Production work 4)

Documentation work and 5) Supporting work, where each category has a number

of sub-categories. The description of the category should be read in relation to its

contribution to the work of the specific Task to which it contributes, not the overall

project. Thus Planning Work is restricted to specific plans for the Task which the

Action is part of.

Two aspects of this classification warrant further explanation. Unlike Conversa-

tion Analysis schemes, this classification does not distinguish between a request and

a response; this is because requests by themselves do not contribute to the work, only

the effect of a request, such as the information provided by a response, do that. How-

ever for a holistic, sequential, understanding of the Task it is necessary to also code

requests, so they are coded according to how their response would have contributed;

for example a request for further information on what a user was doing when they

hit a bug would be coded as “Use Information Provision”, since that is the type of

contribution the answer would give. Interestingly requests were only found where

their responses would be a form of Supporting work. This is consistent with earlier

findings that participants do not assign work to each other (Crowston et al., 2005).

The distinction between Core and Polishing Production work emerged during clas-

sification of Actions and is a distinction of potentially high importance to answering

the research question of this study. The distinction emerged due to a tension that

emerged in the analysis process. In general it is hard to estimate the time and ef-

fort expended by a coder simply from the final results, since the code, build, debug

cycle is private and a hard-won, innovative solution is often quite short in its final

form. Conversely, however, it is usually relatively easy to see if a CVS check in is

a quick, low importance change, such as fixing a typing error in a dialog box, or

removing a compiler warning (not an error). As I sought to make narrative sense of

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 114

the Tasks these small changes seemed qualitatively distinct from the larger coding

contributions. They improved the ‘shine’ or release readiness of a core contribution,

without fundamentally altering its functionality or behavior. As we will see below

this type of work almost always follows a core contribution—as polishing follows

construction—and when it is done by another coder is usually done without visible

discussion.

Nonetheless I was concerned that this distinction was driven by my working hy-

pothesis of individual work. It was possible that I was discounting smaller contribu-

tions to defend the image developed in BibDesk of a single programmer leading the

way in each Task. To avoid this I split the Classification of programming work into

two categories: Polishing and Core and I took particular care to present and analyze

the results both with this distinction and without, treating all programming work

as a Core contribution. As we will see this distinction turns out not to be highly

consequential.

To record the classification of Actions, I created another object in my dataset: a

CodeApplication. A CodeApplication links an Action with its classification according

to the contribution it was understood to make towards the Task Outcome. Also

recorded are the time the classification was applied and a memo field to record my

reasoning for applying the classification. The classification process was relatively

speedy, taking about 2 days in total. The reason that this was quick is most likely

due to simplicity of the classifications and the Tasks being organized into cohesive

temporal narratives by the creation of Actions in the previous analysis step.

Classifying Tasks by contribution patterns

The detailed, iterative, qualitative work described above yields a dataset which is

well-structured and amenable to automated classification according to patterns of

contribution by different Participants. This classification gets at the main research

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 115

Figure 5.9: The workflow for classifying Tasks. The classification was performed pro-
grammatically

CoProduction

Solo
Production

Polished
Solo

Production

Production Work

Non
Production

Work Solo Production Work

1

2

3

1

2

3

Has some productive work?

Core prod actor count > 1?

Has polishing actions by actor
without any core production?

Production-only Classification

1. NonProductWork
2. SoloProductionWork
3. PolishedSoloProductionWork
4. CoProductionWork

Has
reviewing
actions?

+ Reviewed

Has
supporting
actions?

+ Supported

Yes Yes

Has
management

actions?

+ Managed

Yes

Considering only actors without any
production activity Complex Classification

6 possible combinations of
Reviewed, Supported and Managed
added to 3 Production-only gives 18
categories, with Non Production Work,
gives 19 overall classifications.

Splits

question of this chapter, enabling a distinction between Individual work and other

collaboration patterns. As we will see the classification works on two levels in order to

provide a nuanced answer to this simple research question. The classification system

developed is shown in Figure 5.9 (on page 115).

The classification proceeds by building up a name piece by piece. It begins by

focusing on the two types of Production Work, choosing between Non, Solo, Polished

or Co. Non Production Work are those Tasks where no Actions could be identified

that contributed to the shared output of the product. These are all Tasks which were

to do with administering CVS, either creating a branch or editing the .cvsignore file

as a convenience for developers. These are potentially useful actions, but they don’t

affect the final shared work product, so they are dropped from the analysis at this

point. There were three overall, all in Gaim. Each involved only a single actor.

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 116

Figure 5.10: The Task can be classified based on patterns in the types of Actions
undertaken by Participants

TaskOutcome

Task

Relevant
Documents

Actions

someuser

kingant

someuser

kingant

kingant

Classification
Supported Solo Production Work

The first classification is based only on the
number of Actors with actions coded
Production work. Here there is only one
actor with production work (kingant), so this
task is Solo Production Work.

The second classification adds the
Supported, Reviewed or Managed tags.
Considering only actors without production
activity, someuser has provided Support, so
the Task is classified as Supported Solo
Production Work

Solo Production Work means that only a single actor performed all of the pro-

duction work in the Task. Co Production work means that more than one actor con-

tributed core production actions. Polished Production Work is a hybrid, and means

that while only a single actor did core production work for the Task, one or more

other actors provided polishing tweaks to their work. As discussed above, the distinc-

tion between polishing and core work, while clear to me, contains an interpretative

tension. It is possible to argue either way for whether these show interdependency in

work and therefore they are separately classified. As we shall see, there are relatively

few and wether they are grouped with the Solo or Co Tasks does not substantially

affect the results.

The second step in classification adds nuance and only considers Actions per-

formed by Participants who did not also perform Core Production Work. It then

adds a word depicting the type of additional work these Participants did, whether

that be Reviewing, Supporting or Management work. Dropping core production

participants before this addition ensures that the classification is interpretable as one

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 117

about collaboration; a self-managed or self-supported task is, for our purposes, simply

Solo Production Work.

The classification can therefore be interpreted at two levels. The first is only in

regard to Production Work: Non, Solo, Polished and Co. The second, more complex,

classification may add up to three additional labels to the three types of Production

work, describing whether the production work was Reviewed, Supported or Managed.

On further inspection almost all the management work simply consisted of closing

Tracker items, rather than the more interesting codes for classifying task assignment

etc. This is consistent with earlier findings that FLOSS participants do not assign

tasks to each other (Crowston et al., 2005). Therefore, for clarify of presentation, the

additional Management tag was dropped in the presentation of results below.

5.3 Results

We can now present the results of the study, beginning with broad descriptive outlines

of the set of Tasks, then presenting the result of the classification and presenting

detailed illustrative examples of each type. Finally we examine a set of Tasks which

provide evidence of productive deferral.

Descriptive Summaries

The analysis of the two periods yielded 106 tasks in total: 62 from Fire, 44 from

Gaim. They can be summarized in a number of ways: the number of actions that

contribute to them, the number of individuals that contribute and their duration.

The shortest tasks, in terms of action count, were only a single action, while the

longest, an outlier, included 81 actions, of which 34 were coded as Production Work

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 118

Figure 5.11: Distribution of Actions per Task. Note that an outlier of 81 Actions was
removed for this figure

Act ions per Task (Fire out lier at 81 not shown)

T
as

k
C

ou
nt

0

5

10

15

20

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

fire gaim (all)

Figure 5.12: Distribution of Production-only Actions (core and polishing) per Task.

Prod. Actions per Task

T
as

k
C

ou
nt

0

10

20

30

40

50

60

0 10 20 30 0 10 20 30 0 10 20 30

fire gaim (all)

(by 2 separate actors), as shown in Figure 5.11 (page 118) and Figure 5.12 (page

118).

In terms of Actor involvement, there were 30 tasks with only a single actor, while

the highest overall Actor count was 11 (again in the outlier). Considering only pro-

duction actors the range was only from 1 to 3 actors, heavily skewed towards 1. These

distributions are shown in Figure 5.13 (on page 119) and Figure 5.14 (on page 119),

where the skew of the data towards lower actor counts is clear.

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 119

Figure 5.13: Distribution of distinct actors per task, considering all Action types.

Actors per Task

D
is

ti
nc

t
A

ct
or

 C
ou

nt

0

10

20

30

40

50

60

70

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

fire gaim (all)

Figure 5.14: Distribution of distinct actors per task, considering only Production
actions

Product ion Actors per Task

T
as

k
C

ou
nt

0

20

40

60

80

0 1 2 3 0 1 2 3 0 1 2 3

fire gaim (all)

In terms of calendar duration (from first to last Action), the shortest tasks were

instantaneous, since they consisted of only a single Action. The longest, including all

Action types, was over 413 days. Considering only Production actions, the longest

Task was 67 days. Some Tasks were longer in duration than the inter-release periods

since they included Actions from Trackers or Email threads that were outside the

period; all Actions coded “Production Work” occurred inside the period. These

distributions are shown in Figure 5.15 (on page 120) and Figure 5.16 (on page 120),

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 120

Figure 5.15: Distribution of temporal period from first to last Action (of any type)

Durat ion in Days

●● ●● ● ●●● ●

● ●●●● ●● ●

fire

gaim

0 100 200 300 400

Figure 5.16: Distribution of temporal period from first to last Production-only Action
(core or polishing)

Durat ion in Days (P rod. only)

●●● ●● ●● ●

● ●●●● ● ●● ●●●

fire

gaim

0 10 20 30 40 50 60

using boxplots showing the mean and bulk of the distribution below 2 weeks, with

long outliers (which are discussed in detail below).

Classification Results

Figure 5.17 (on page 121) and Table 5.2 (on page 121) show the results of the classi-

fication. Overall, of the 106 there were 3 Non production work Tasks (all in Gaim),

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 121

Table 5.2: Collaboration Classification

Non Solo Polished Co Sum

Fire 0 52 6 4 62
Gaim 3 31 4 6 44
Sum 3 83 10 10 106

Figure 5.17: A figure showing the results of the classification. The basic classification
is shown across the X axis, task counts on the y axis. The stacking in the
bars shows part of the complex classification, based on whether the Tasks
also had contributing Reviewing or Supporting actions. The dominance
of individual work is clear in the dominance of the darker sections.

Collaborat ion pat tern in P roduct ion Work

T
as

k
C

ou
nt

0

5

10

20

30

40

50

Solo Polished Co Solo Polished Co

fire gaim

Neither

Supported

Reviewed

ReviewedSupported

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 122

83 Solo Tasks (Fire: 52, Gaim: 31), 10 Polished Tasks (Fire: 6, Gaim: 4) and 10 Co

Production Tasks (Fire: 4, Gaim: 6). This shows the dominance of the Solo produc-

tion mode: fully 81% of the Tasks were the result of individual production efforts,

against 10% where two developers provided substantial contributions. Even if one

drops the distinction between core and polishing production work, thereby moving

all Polished tasks to Co work, the dominance of individual Tasks remains, with 83

Solo tasks and 20 Co work tasks.

The additional classification shows that fully individual solo work is the pre-

dominant collaboration mode, while providing additional subtlety. Table 5.3, and

the dominance of the darker sections in Figure 5.17, shows that the largest single

category was Solo work that was neither reviewed nor supported by other actors in

any way (35), although this is true overall all only because it is strikingly true for

Gaim.

Table 5.3: Solo-only Additional Classification

Neither Supported Reviewed Rev. & Sup. Sum

Fire 24 25 1 2 52
Gaim 11 5 13 2 31
Sum 35 30 14 4 83

Supported Solo work was a close second with 30 total tasks, dominated by 25

such tasks in Fire. The majority of these reflect user reported bugs or requested

features that were eventually implemented by a single developer. Only a handful of

tasks involved active testing of debug or CVS builds, in many cases these supporting

reports or interactions were quite old (100s of days), and in some they reflected

additional user reports of bugs against the version “in the wild”, but already fixed in

CVS (i.e. the Actions coded supporting follow the Actions coded Production.). Most

of the Reviewed tasks involved the creation of a translation which was checked in by

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 123

a developer with CVS access, although Gaim incorporated more non-translation user

patches than did Fire.

Illustrative Tasks

This section presents an illustrative task for each of the categorizations presented

above, in order to give the reader a richer feel for the data, and lay the groundwork

for illustrating the theory developed in Chapter 7. It is clear that not all similarly

classified tasks were identical to those presented here, so where possible characteris-

tic variations for each Task type are noted. The presentation begins with the most

collaborative, and least common, type of task and works its way to the least collabo-

rative, and most common, types of tasks. The full output for these tasks, including

links to source Documents, is presented in the Appendix, on page 230.

Illustrative Co-Production Work

Table 5.4: Illustrative Co Work

Date/Gap Actor (overall role) Action Code Applied

Gaim Task 2: manual browser security fix
1 Jul 20 2002 kareemy (user) reports bug Use Info. Provision
2 1D 5h 50m lschiere (dev) attempts diagnosis Code Info. Provision
3 (undated) robot101 (p dev) writes patch Core Production
4 20D 9h 41m seanegan (dev) checks in patch Review
5 10D 18h 10m seanegan (dev) tweaks fix Polishing Prod.
6 1D 20h 8m chipx86 (dev) re-writes fix Core Production
7 1D 3h 20m seanegan (dev) move fix to branch Management Work

In late July/early August 2002, the Gaim project had a potentially serious bug:

the ‘manual browser’ setting could allow an attacker to gain additional privileges and

delete files on a Gaim user’s computer. It was a serious but not uncommon type of

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 124

bug; the result of not properly sanitizing a user’s input. The Actions contributing to

the Task are shown in Table 5.4.

A user reports the bug, and a developer responds relatively quickly with a diag-

nosis (which turns out to be wrong). Two weeks later a peripheral developer writes

a patch and submits that to a core developer, who checks it in and documents the

change in the README file and the SVN check-in log. Ten days later, without in-

tervening discussion or testing, the core developer returns and tweaks the fix. A day

later, again without discussion, a different core developer rearranges the fix entirely,

using a much more robust technique. Finally the developer preparing the release, on

a branch, moves the improved fix to that branch. In this way the fix makes it to the

0.59.2 release and is a bullet item in the release notes.

The task involves seven separate actions by five distinct participants, three of

whom make substantial changes to the code base. This task is shown in Table 5.4 (the

undated action is an ImpliedAction, based on seanegan explicitly thanking robot101

for a patch as he applies it, the exact time the work was done is unknown, but it is

known to have happened prior to its review and check in).

This Task illustrates a popular image of how FLOSS collaboration works: input

from the community and multiple developers helping each other out. It is striking for

doing so in a short task, but more striking as one of only two examples of this style of

collaboration in the dataset. The other is the Fire project working to integrate a new

version of the libfaim library, providing access to the OSCAR protocol for the first

time (it is also the longest, at 81 actions and 11 distinct participants). While this

image of highly collaborative work is inviting and matches expectations regarding

teamwork it is far from common.

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 125

Table 5.5: Illustrative Polished Work

Date/Gap Actor (overall role) Action Code Applied

Gaim Task 34: TOC and ICQ plugin removed
1 Aug 07 2002 seanegan (dev) removes old code Core Production
2 18h 16m 35s chipx86 (dev) reverts error Polishing Work
3 1D 9h 47s chipx86 (dev) fix remaining bug Polishing Work

Illustrative Polished Work

The illustrative Task for Polished Production Work is work done to remove an out of

date feature in Gaim, see Table 5.5. It is notable because, while the core work is done

by one developer, another developer, without speaking with the first, fixes a small

error in the first developer’s code. The second two actions are coded as Polishing

Production Work, because they are small and merely complementary to the earlier

contribution.

This Task is far more indicative of the full dataset than the Co work task shown

above. The developers act without discussing their work before hand, and do not

announce it on the mailing lists or Trackers. The polishing here is a very small

amount of work, but it is important (the first polish actually fixes the build).

Illustrative Solo Work

The bulk of the work tasks done in the periods studied are classified as Solo work, just

under half of which is Supported in various ways, but where only a single Participant

is actually changing the software code. Since these are dominant and small, I have

chosen one of each type to illustrate this class of work, as shown in Table 5.6.

There are 30 tasks that only involve a single actor, and 9 of these only involve a

single Action (the others range from 2 to 8 in length, with 4 longer than 3 Actions).

An example is ‘user list duplicate fix’ (Fire Task 57), where gbooker, a core developer,

makes a single check-in that fixes a situation in which users were showing up twice

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 126

Table 5.6: Illustrative Solo Work

Date/Gap Actor (overall role) Action Code Applied

Fire Task 57: user list duplicate fix
1 Dec 06 2002 gbooker (dev) fixes bug Core Production

Gaim Task 3: iconv library integrated
1 Aug 02 2002 seanegan (dev) adds library Core Production
2 19m 52s seanegan (dev) changes ChangeLog Documenting Work
3 26m 10s seanegan (dev) integrates library Core Production

Fire Task 5: scroll on PgUp
1 Nov 19 2002 nkocharh (p. dev) makes PgUp scroll Core Production

Fire Task 29: AIM buddy icons
1 Oct 27 2002 gbooker (dev) checks in buddy icon code Core Production
2 (same time) gbooker (dev) changes ChangeLog Documenting Work
3 39m 3s gbooker (dev) add jpg icons Polishing
4 1h 22m gbooker (dev) add bitmap icons Polishing
5 12h 1m gbooker (dev) .buddyicon save Polishing
6 1h 22m gbooker (dev) add bitmap icons Polishing
7 3D 13h 1m gbooker (dev) fix IRC icons Polishing
8 3D 18h 34m gbooker (dev) fix memory leak1 Polishing
9 1h 6m 23s gbooker (dev) fix memory leak2 Polishing

Gaim Task 18: Finnish Translation (Reviewed Solo)
1 (unknown) teroajk (trans.) writes Finnish trans. Core Production
2 Jul 02 2002 robflynn (dev) checks in trans. Review Work
3 (same time) robflynn (dev) thanks teroajk Management Work

in the user list. There is no indication in the archival record as to how he became

aware of the issue; it may have been via private email, but it is also likely that he

came across this small issue himself and, without seeking permission, planning or

announcing his intentions, fixed the bug.

These Tasks are not necessarily trivial. A second example is ‘iconv library in-

tegrated’ (Gaim Task 3) in which seanegan integrates a new library which provides

much needed character set conversion services, facilitating an improvement in han-

dling non-latin characters. As shown in Table 5.6, it consists of three Actions, all

by the same person (the third action brings together three separate CVS checkins

occurring close in time and code; the two following are bug-fixes for the work of

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 127

the first check-in). Table 5.6 also includes two additional straight solo tasks and an

illustrative Reviewed Solo task.

5.4 Discussion

The results show two clear findings regarding patterns of collaboration. The first is

that the organization of work, at a task level, is heavily skewed towards individual

work, a theme across all the distributions above but most clear in Figure 5.17 (on

page 121). Even when others are involved they are almost never doing concurrent

development, but helping in others ways such as providing information about program

use. Only 19% of tasks involved more than a single actor doing production activity,

and in half of these the second actor only provided polishing-type production changes,

such as typos or small leak fixes.

The second was that tasks tended to be relatively short in time, with the majority

(65%) completely playing out over less than 2 weeks, shown in Figure 5.15 above and

below in Figure 5.18. Given that some of the longest tasks include Tacker comments

from previous years, the time compression is even more clear when considering just

the span of production activity on the Task: only 10% of tasks extended longer than

2 weeks.

A reasonable objection to the results above is that this skew is seen because there

are many simple tasks and relatively few complex tasks. Individuals can handle simple

tasks, but the project cannot truly excel without facing up to complex tasks and these

require inter-personal dependency and collaboration. This study did not attempt to

measure the complexity of the tasks undertaken; simple measures such as changed

lines of source code are always suspect and would give clearly wrong answers here.

For example the largest sized changes are the introduction of new libraries, which is

just the result of copying already prepared code from another location, leading to very

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 128

large numbers of added or changed lines. The harder work, of course, is integration,

which would change a much smaller number of lines, but reflect much harder work.

For example, as a library is checked in, changing over 2,500 lines, one developed noted

in the CVS comment, “Silly cvs. . . Most of these files were not changed. . . ”2. In

contrast a check in involving changes to only 22 lines included the comment, “I spent

6 hours traking [sic] this thing down!!!”3 and another, adding 20 lines and deleting

30, “It was 15 fun hours of debugging!”4.

The archives do not provide good evidence about complexity and task duration

should not be used as a proxy for effort, since it tells us little about how much of the

time elapsed between events was actually spent working on the Task. Certainly some

of the Solo work is simple, but so too are some of the Co Work Tasks. Many of the

Solo tasks appear far from simple.

Evidence for deferral

The second research question of this chapter asked whether there was evidence of de-

ferral of work. There is good illustrative evidence for this aspect of FLOSS organizing.

There were 17 tasks (16%) which had supporting actions which were outstanding for

a period longer than the whole inter-release period (15 were longer than 100 days and

four longer than a year). Clearly these were desired features, and in most cases the

developers indicated that they desired their inclusion in the software (in one case the

most active at the time was the initial requester). These tasks are shown graphically

in Figure 5.18, on page 129, where different types of actions are shown with differ-

ent shapes, and different actors in different shade of gray. Note the early Tracker

supporting Actions (more pronounced for Fire than Gaim) and the intense activity

2http://fire.svn.sourceforge.net/viewvc/fire?view=rev&revision=1674#document

3http://fire.svn.sourceforge.net/viewvc/fire?view=rev&revision=1589#document

4http://fire.svn.sourceforge.net/viewvc/fire?view=rev&revision=1779#document

http://fire.svn.sourceforge.net/viewvc/fire?view=rev&revision=1674#document
http://fire.svn.sourceforge.net/viewvc/fire?view=rev&revision=1589#document
http://fire.svn.sourceforge.net/viewvc/fire?view=rev&revision=1589#document
http://fire.svn.sourceforge.net/viewvc/fire?view=rev&revision=1779#document
http://fire.svn.sourceforge.net/viewvc/fire?view=rev&revision=1674#document
http://fire.svn.sourceforge.net/viewvc/fire?view=rev&revision=1589#document
http://fire.svn.sourceforge.net/viewvc/fire?view=rev&revision=1779#document

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 129

F
ig

u
re

5.
18

:
T

as
k
s

ov
er

80
d
ay

s
in

to
ta

l
d
u
ra

ti
on

.
E

ac
h

li
n
e

is
a

ta
sk

,
ea

ch
it

em
is

an
A

ct
io

n
w

it
h

th
e

co
d
ed

ty
p

e
sh

ow
n

b
y

sh
ap

e
an

d
th

e
ac

to
r

b
y

th
e

sh
ad

e
of

gr
ay

.

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 130

during the respective release periods (shown on the bottom axis). The darker shade

of the majority of early Supporting actions indicates that they were performed by

‘other’, indicating active users not in the top seven actors by count. jtownsend, a

core developer, also participates early, usually with diagnoses.

This pattern is not merely an artifact of the method, caused by not looking for

early production actions, because the Fire developers return to the Tracker to com-

ment when they are working on the task and often include comments like “by popular

demand” or “that was an old one” in their documentation of their work. These tasks

include protocol dependent things like adding file transfer, or away messages to Fire.

For example, in Task Fire 9 in March 2003, a user requests that the away message

only be sent when it changes. Also in March 2003, one of the developers assigns the

request to himself, indicating acceptance of this as a desirable feature. Yet nothing

actually happens in terms of code production until October 2003 when jtownsend

re-assigns the feature to himself and says,

This is possible now with the ‘once’ option for how often to send away

messages. We just need to reset the message count when changing state....

I think I have a fix for this... probably will check it in the next week or so.

And the fix is checked in a few weeks later. This indicates well the way in which

the project deferred the task until it was easier due to the unrelated implementation

of a different feature.

Another similar pattern is relatively common in Fire, where work is deferred

pending the arrival of new underlying protocol libraries. Task Fire 36 results in a

working implementation of MSN file transfer. This feature was often requested, as

early as November 2001, with regular requests and duplicate tracker items. In April

2002 jtownsend comments, “To get file transfer in MSN we need to upgrade to the 2.x

version of the MSN library we’re using.” Various alternative options are suggested

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 131

by users (e.g. posting ftp links) but the feature remains unimplemented until libmsn

is upgraded and integrated in October 2003. jtownsend remarks,

I’ve checked in preliminary MSN file receive support. File send is also

supported by the version of the MSN library we have, but there’s some

work to do in Fire to expose it.

That work is eventually completed and Fire has a two-way MSN file transfer

function.

Task Fire 35 shows a similar pattern. In December 2001 a user requests ssl

capability in Jabber. The initial request is followed, in April 2002, by a number of

other users also requesting this. However it is not until October 2002 that jtownsend

posts saying, “OK, it looks like Proteus recently added this so we should be able to

leverage their code.” (Proteus is another OS X multi-protocol IM client, a competitor

in some ways). He checks in working code in November 2002, specifically thanking

“the Proteus team” in the edit to the README file.

Deferred tasks are as interesting for what was not done as for what was. The

projects did not attempt to build an implementation plan, working either individually,

or given the complexity of reverse engineering the protocols, in groups to build the

needed code. Instead work was deferred, the issue noted and from time to time

revisited in the Tracker, either for a reiteration of the need for the feature, or for

a developer to diagnose, in very broad strokes, what might be needed to allow the

participants to begin implementation work. In almost all of these cases the projects

eventually implemented the features by integrating a new library for an underlying

protocol (e.g. libmsn, libyahoo2 or libfaim). Integrating these libraries is not too

complex, but they allow the project to ‘jump forward’, turning what had once been

too complex for the project to attempt into work that can be accomplished through

layers of relatively small, quick, individual tasks that characterizes the normal work

of these FLOSS projects.

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 132

It is clear from Figure 5.18, and the presented Tasks, that this is more common

in Fire than Gaim, which shows only three tasks with long deferrals (and even those

are shorter). This may relate to the ability of the Gaim project to build not only its

IM client, but also to release a widely used software library: libfaim. libfaim (later

libprpl) provides the underlying protocol library for the AIM instant messaging pro-

tocol. Indeed the longest episode in the Fire project is the integration of a new version

of this library which they specifically thank Gaim (and active individual developers).

Clearly the Gaim project did not always defer difficult work, but understanding how

they were built would take a detailed task-level study of those specific libraries (there

was no work on the library in the period studied). It is possible that they themselves

rely on libraries and were built layer-by-layer.

Limitations and Threats to Validity

There are four main limitations of this study. The first are related to case selection

and were discussed above. The second involves questions about the place of this

study in the overall dissertation. The third involves questions of the reliability of this

study and the fourth relates to threats to the findings of deferral.

The role of this study

A reasonable objection to the design of the study is whether it can truly serve its

intended role of replication in the overall structure of the dissertation. At issue is

whether the fact of the analyst’s experience and pre-existing conclusions from BibDesk

do not undermine the replication purpose of the study. Why would the analyst be

restrained to see what actually exists, as opposed to what he already believed to be

present?

The study as reported above addresses this very real concern primarily by relying

heavily on the participant’s own organization of work into Tasks, through the evolving

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 133

README and the enactment of the structure in the release notes. This emic anchor

is a fundamental starting point for the analysis, providing over 90% of the Task

Outcomes. Secondly the category of polishing production work was created for those

Actions for which I felt interpretative strain, and was therefore concerned that the

hypotheses were influencing the decisions untowardly. By presenting these decisions

as a separate category the robustness of the work was tested because the result

remained even if these were counted as Co work. Finally, while Solo work was found

to be dominant, a significant amount of Co work was also found and presented,

showing the method and analyst to be at least capable of seeing this Task structure.

Reliability

A second reasonable objection to the overall method is to ask, if the research question

is relatively straightforward, why is a qualitative, intensive effort the most appropriate

method? Why not a standard deductive content analysis effort with multiple trained

coders which is far more capable of demonstrating the reliability of the results? The

answer is not that a study attuned to reliability is epistemologically impossible but

rather than it would have been damagingly premature and would have undermined

the theory development aims of the overall dissertation. The argument for this is in

four parts.

Firstly, building a coding scheme based only on the experience in BibDesk would

have been premature because I was not yet clear on how experienced task structure

would be revealed through purely documentary inquiry rather than experienced par-

ticipation. Replicating the qualitative study in these two projects was necessary to

assure myself that these structures were indeed recognizable just from documents.

Secondly, I was not yet confident of my ability to convert tacit interpretive un-

derstandings into a deductive, rule-based coding scheme capable of being taught to

those without field experience. If the original analyst could not replicate the findings

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 134

certainly he could not teach the method to others. More importantly, the effort to

systematize experiential findings for documentary analysis surfaced and made explicit

my own understanding. This is shown through the generation of concepts such as

Event, Document and Action, which were not present prior to the systematic sense-

making undertaken in this chapter.

Thirdly, the iterative process of interpretation simultaneously creates the cate-

gories (Tasks) and assigns evidence to them (Documents and Actions). This is more

complicated than a standard content analytic exercise in which the categories are

deduced from the literature and the unit of coding (word, sentence etc) is uncon-

troversial. Again it would have been premature to attempt agreement statistics this

complex before the constructs were made more clear through iterative sense-making.

The fourth, and most important, reason is that the process undertaken in this

chapter created the space for the theory to be presented in Chapter 7 to develop.

In particular the iterative and immersive method allowed the analyst to understand

further the role of deferral and the systematic role it plays in facilitating largely

individual work. An effort to focus too early on reliability alone would have hindered

the overall theoretical goals of the dissertation. The method provided illustrative and

generative understandings which guided the theoretical insights. Even if a coding

scheme could have been generated without this sense-making work and shown to be

fully reliable it would still only cover two FLOSS projects. For this reason the work

reported in this chapter is more valuable for its role in generating and illustrating the

theory presented in Chapter 7, and was therefore appropriate.

Overall, then, this study prioritized confirming the validity of the constructs and

allowing theory to develop over and above testing the reliability of pre-determined

constructs. This does not come without a price, of course, and the section below

outlines the specific ways in which questions of reliability threaten the findings of the

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 135

chapter. As a result of this study future research is now in a much better position to

take up these challenges.

Considered from the perspective of positivist content analysis there are five sep-

arate coding decisions made in this analysis.

1. Recognizing separate Task Outcomes,

2. Assigning Documents to Tasks,

3. Recognizing Actions evidenced by Documents,

4. Recognizing which Participants undertook the Actions, and

5. Recognizing the contribution of the Actions to the Task Outcome.

If the concepts developed are robust and can consistently organize reality then

multiple independent coders should agree on the coding decisions at each of these

steps. It is, however, usual to allow for some relatively small level disagreement,

perhaps caused by coder fatigue or a small set of either interpretative differences (akin

to measurement calculation) or even a small amount of ambiguity in the concepts.

This is why multiple coders are usually held to be in sufficient agreement when they

agree in over 80% of the cases, after adjusting for random disagreement (such as

through a kappa statistic).

The main result of this chapter, the dominance of individual work, is based on

the number of separate participants contributing code production towards different

Task Outcomes. It could be threatened by issues in each type of coding, although

some more than others. Working backwards, only a small subset of Actions were

coded as Production Actions, so as long as agreement was achieved on that code,

disagreement between, say, Management or Supporting contributions would not be

a threat. The category of Polishing Production was created for the cases in which

the contribution was borderline, such as fixes to compiler warnings. Recognizing

which Participants undertook a production Action is obviously fundamental, but is

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 136

a relatively easy process, since it only involves either exactly matching unchanging

Sourceforge usernames or recognizing multiple forms of Participant’s real name, which

is a natural skill of human coders.

Recognizing when an Action is evidenced in a Document is somewhat more com-

plicated, but the vast majority of Actions are explicit, meaning that the existence

of a Document (e.g. SVN check-in) already makes it clear that an Action has taken

place (of 758 total Actions, only 39 were Implicit). Implicit Actions have to be rec-

ognized from reading the textual content of the Documents, but in the majority of

cases this is triggered by the inclusion of a name and a phrase indicating credit or

thanks. Simple rules seem likely to be able to cover these cases.

Recognizing when the content of a Document relates to a specific Task is a more

complex decision, as shown in the examples presented above. It relies on an under-

standing of the Task Outcome and the software development required to accomplish

such a Task Outcome. This requires some contextual knowledge of the overall applica-

tions and their interaction with things like the individual IM protocols. Introspection

on the process through reviewing coding memos reveals that the most common factor

for recognition is the identification of keywords and their reoccurrence in other re-

lated Documents. However in many cases one must not match the exact keyword (or

a stemmed version) but a synonym or nearby concepts that, based on one’s under-

standing of software development, are likely to arise in the course of work or discussion

regarding this Task Outcome. Also vital to this process is a global understanding of

the other Task Outcomes, since these provide the anchors into which the Documents

must be sorted. Coders would be aided by the software developed in the course of

this work which re-ordered assigned Documents into their real-time order, since this

allows a coder to play “what-if” and to check the logical and narrative implications

of a specific coding decision. There is also some assistance available from Discussion

structures, such as tracker items and email threads. Tracker Items especially tend to

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 137

be relatively focused, while email threads can split into multiple simultaneous topics,

but the Discussion still has linear, if parallel, coherence.

Of probably the most importance is the recognition of specific Task Outcomes.

These anchor the entire process, the Documents are held to be relevant to them and

the Actions are coded according to an assessment of a contribution to them. The

iterative process of assigning Documents and checking the narrative coherence of the

Tasks may lead to changes in the set of Task Outcomes, which then cascade back

to earlier decisions about relevance. The process is vastly improved by the line-by-

line nature of the Release Notes and by observing the evolution of those notes in

the README throughout the chosen period, which together provide over 90% of

Task Outcomes. This provides an anchor which relies not on the coders perceptions

but the participant’s near-contemporaneous perceptions of the Tasks Outcomes they

were accomplishing. Mechanistically separating the release notes into Task Outcomes

would provide enough initial agreed structure that later disagreements about Tasks

not mentioned in the Release Notes or README might have less impact. Simply

following the rule that a Task Outcome is any line at the maximum level of indentation

would provide automatic agreement of about 60%. Further, the existence of the initial

list may provide sufficient common ground for the coders that other decisions become

easier, especially when it comes to assessment of the README file.

Overall, then, it is important to recognize that the final set of Tasks and Actions

ought to be in overall coherence and that individual coding decisions are likely to be

increasingly influenced by an analysts’ growing understanding of the whole period, as

well as the working and documentation practices of the project. This makes testing

each step as a separate ‘coding scheme’ problematic and suggests the best course for

reliability checking would be to have two coders each code the entire period. This, of

course, is substantially more effort than the common practice of agreeing on a subset

of the corpus (≈ 10%) then dividing the remainder between the coders. Having said

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 138

that, it may be possible to check the reliability of some steps post-hoc by presenting

new coders with a subset of the Tasks, together with all the Documents thought

relevant to that subset, as well as a random sample of Documents thought to be

relevant to other tasks (or none) and to test to see if an adequately similar structure

emerges from an holistic understanding of the subset.

The experience reported in this chapter suggests that the riskiest steps are the first

two, recognizing the Task Outcomes and finding the relevant Documents, particularly

as the number of Task Outcomes rises and strains the analyst’s working memory. If

two Tasks classified as Solo tasks where the productive work was undertaken by

different Participants were to be merged by arguing that their Outcomes were, in

fact, the same, then that would reduce the count of Solo tasks by two and increase

the Co tasks by one, very quickly affecting the overall ratio. A key aspect of coder

training, therefore, would be training to understand the genre of release notes as well

as general familiarity with the actual software application itself. This also suggests

that time ought to be invested upfront in ensuring that the two coders generate close

agreement in the set of Tasks, working just with the release notes and README file.

As suggested above, simple near-automatic rules can provide substantial baseline

agreement.

Threats to finding of Deferral

The secondary finding of this chapter, that projects defer work and seemingly do

so when it is considered complex, rests on shakier ground that the primary finding.

Firstly the concepts are less well defined. Deferral is defined as an acceptance of the

desirability of a task, but a delay in the work needed to accomplish it. This must

be distinguished from group-level disagreement as to the desirability of an outcome,

or even disagreement as to the intention of the outcome itself (sometimes feature re-

quests are simply hard to understand). Furthermore the suggested reason for deferral,

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 139

that of complexity, is difficult to judge since it relies on understanding the internal

cognitive judgements of individuals. These are sometimes documented, as shown by

the qualitative evidence for deferral (on page 130) but often are not documented at

all.

However, it should eventually be possible to develop a deductive content analytic

scheme to recognize and distinguish between disagreement, uncertainty and deferral

in discussions. Developing such a scheme would be enhanced by pursuing interviews

regarding the topic during the development of the scheme.

The graphical evidence, on page 129, relies on the observation that supporting

Actions, usually requests and/or diagnoses extend back much further in time than

the productive actions. However it is possible that this is simply an artifact of admit-

ting Documents outside the release period from Discussions, especially from Trackers

which tend to be much longer lasting. Effort to improve the usefulness of this more

quantitative evidence for deferral should concentrate on expending the coverage of

other Document types, especially CVS/SVN logs, to ensure that preparatory work

was not being undertaken at regular intervals outside the focal period.

5.5 Conclusions

Table 5.7: Archive Study Findings

Finding Justification

1 Work in Fire and Gaim was individual by a factor of 8:1 Classification
2 There was evidence of complex tasks deferred until libraries made them easier Long tasks

The study reported in this chapter aimed to replicate a core aspect of the BibDesk

case study: the dominance of short individual taskwork. The finding was confirmed.

Indeed it is focused and strengthened with an even more apparent skew towards

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 140

individual work and a quantification of the dominance of relatively short durations.

In addition further illustrative evidence was found for the deferral of complex work.

While it is possible that developers in Fire and Gaim work even more individually

than in BibDesk is it perhaps more likely that the strengthening of the BibDesk

results are a result of the differences in method. In the BibDesk study development

contribution was represented by a very weak proxy: whether or not the Participant

was an overall developer. This study shows that while a Participant might contribute

to development in some Tasks, they are quite likely to act in ways that only make a

non-Production contribution to other Tasks. This confirms the understanding that

developers in FLOSS projects are not limited in their roles. In fact it seems more

likely that roles are additive: A developer making core code contributions does not

seem to stop providing Support or Testing other’s work and is more likely to do things

like closing Trackers than to assist others with production coding.

Further the BibDesk results examined all project activity, including activity that

did not result in changes to the shared outputs of the group. This choice included

many user-support discussions on the users mailing list, as well as Trackers that close

without changes (invalid bugs or rejected RFEs). These types of project activity are

‘discussion-only’ and reflect lower levels of time investment than do production work;

they may involve more participants.

In this way the results presented in this chapter provide the beginnings of a solid

answer to the first research question of this dissertation: work in FLOSS projects,

for the large part, is organized to be individual, short and layered. This pattern is

coupled with spontaneous support and the deferral of difficult work. The presentation

of the research in this chapter surfaced the manner in which the analyst came to these

understandings and validated a set of concepts for use in such sense-making.

Yet for a comprehensive answer to the first two research questions of this disser-

tation two crucial questions remain. How is this type of work able to build complex,

CHAPTER 5. REPLICATION: FIRE & GAIM ARCHIVE STUDY 141

interdependent artifacts like software and how does it interact with the motivations

of participants (RQ2)? Further, given the frequency of deferred work and the ease

of forking or founding competing projects, how are FLOSS projects able to progress

sufficiently quickly to satisfy their developers and their user base? To advance an-

swers to these questions the dissertation now turns back to the literature to build a

basis for presenting an explanatory model which links the answers to RQ1 and RQ2,

and provides a framework to advance answers to RQ3.

Chapter 6

Literature Review III

This chapter introduces literature which is relevant to the development of an explana-

tory model in Chapter 7. It focuses on literature which provides models of individual

motivation and literature which links motivation and production. Finally it identifies

risk as a construct that is present in both the motivation and coordination literature,

albeit at different levels of analysis. These concepts are crucial to understanding why

the collaboration patterns identified in the case studies work and work well.

6.1 Motivation

The study of motivation is vast and varied. The purpose of this review is to iden-

tify literature on motivation which enables a better understanding of possible links

between motivation and production, particularly as it pertains to understanding feed-

back and thereby the ability of a project to sustain itself.

A survey of the extensive literature on motivation in the workplace reveals three

key theories that appear likely to be linked to organizational structures and inter-

dependence in particular: expectancy-valence theories and self-efficacy theories job

design.

142

CHAPTER 6. LITERATURE REVIEW III 143

Figure 6.1: The steps in expectancy valance theories. Blockages at either step can
undermine motivation.

Expectancy-Valence Theories

The first relevant set of motivational theories are those called expectancy theories

(Vroom, 1964; Porter and Lawler, 1968). These are considered a process theory of

motivation:

Process theorists view work motivation from a dynamic perspective and

look for causal relationships across time and events as they relate to human

behavior in the workplace (Steers et al., 2004, p. 381).

The essence of the expectancy theory of motivation is that the

attractiveness of a particular task and the energy invested in it will depend

a great deal on the extent to which the employee believes its accomplish-

ment will lead to valued outcomes (Steers et al., 2004).

Figure 6.1, from Samson and Daft (2005, p. 534), shows that there are two sep-

arate expectancies in this theory. The first is Expectancy-Performance (E-P) which

argues that the individual calculates the “probability that effort will lead to desired

performance”. The second is Performance-Output (P-O) which argues that the in-

dividual also calculates the “Probability that effort will lead to desired outcome”.

CHAPTER 6. LITERATURE REVIEW III 144

Either expectation could turn out to be unfounded; the individual could be ‘blocked’

at each stage in the process. For example a programmer might choose a task which

is too difficult or time consuming and fail to create working code. Or despite hav-

ing produced a patch that describes the successful changes they have made to the

codebase, that patch might be rejected or reverted by other developers.

Crucially Porter and Lawler (1968) introduce the idea that individuals will learn

from such failures, as expressed by Steers et al. (2004, p. 381)

if superior performance in the past failed to lead to superior rewards, em-

ployee effort may suffer as incentives and the reward system lose credibility

in the employee’s eyes.

For the purposes of this dissertation the important message of this motivational

theory is that interdependencies could be a source of such blockages and thus demoti-

vating. Failed interdependencies could block, or hinder, the production of a patch or

its inclusion in the software. The frequency with which either of these occurs ought

to affect the expectations of individuals in the future. This effect could easily spread,

since other potential developers may observe such failures and the frustrated emails

they usually produce.

It is certainly true that the obverse is also possible; successful collaboration could

be particularly motivating because of added enjoyment of teamwork or an experienced

responsibility for other’s work. Yet the experience in BibDesk suggests that failures

might have larger negative effect than successes have a positive effect. Certainly

successes are not likely to have the same contagion effects that we suggest failures

might have.

Therefore if a successful project needs to attract participants and get their best

effort, arranging their organizational structure to avoid the occurrence of demotivat-

ing failures seems a useful strategy, if it can be implemented. In Literature Review

II (Chapter 4) we identified FLOSS projects as emergent and their task as flexible

CHAPTER 6. LITERATURE REVIEW III 145

enough that projects have choices about the levels of interdependency. The evidence

in the two studies presented so far suggests that they do indeed choose low levels of

interdependence.

Self-efficacy theories

The second major set of motivational theories that appears to be linked to the organi-

zational structure of a FLOSS project are those associated with goal-setting (Locke,

1996; Locke and Latham, 1990), self-determination (Ryan and Deci, 2000) and self-

efficacy (Bandura, 1997).

Goal setting theory suggests that establishing challenging, yet achievable, goals

increases the motivation of individuals to achieve them. This knowledge has been

developed into the increasingly common management practice of working together

with employees to establish short and long-term goals, and to prompt performance

through ‘stretch’ or difficult goals (Ambrose and Kulik, 1999). Conversely it is un-

derstood that goals are demotivating if they are unachievable or hold little personal

challenge.

Self-determination and self-efficacy theories argue that the experience of setting

one’s own course and believing that one can successfully follow that course is moti-

vating for individuals and potentially groups (Bandura, 1997).

Together this literature suggests that the experience of setting one’s own goals

and achieving them creates a virtuous, motivational cycle. Interruptions in this cycle

are likely to undermine feelings of self-efficacy and control and thus undermine mo-

tivations. Both these understandings seem to fit well with the patterns of individual

work identified in BibDesk and replicated with Fire and Gaim.

CHAPTER 6. LITERATURE REVIEW III 146

Job Design

The third set of motivational theories are part of the job design literature (Hackman

and Oldham, 1980; Herzberg, 1966), sometimes known as the Job Characteristics

Model (JCM). The basic insight of this work is that the nature of the job, and thus

the tasks, that people undertake can affect their motivation and their effort during

work. Ultimately dissatisfaction leads people to leave their jobs.

The characteristics of jobs considered relevant to motivation are these:

• Skill variety (What skills are needed, simple or complex?)

• Task identity (Does the individual complete the task, or just do a small part?)

• Task significance (Is the task important to the person?)

• Autonomy (How much discretion and freedom does the person have in planning

and carrying out the tasks?)

• Feedback (Does the job provide quick feedback to the person about their per-

formance?)

The job design literature identifies the type of individual as important because

different job characteristics are important to different types of people. People with

high “growth need” tend to be more motivated by these factors (or positive answers

to the questions), whereas people with low “growth need” tend to be less motivated

by these factors and more by lower level factors such as basic pay, simplicity and free

time. Since participants in FLOSS projects are almost always choosing to become

engaged above and beyond their regular lives and jobs, it is reasonable to assume that

they have “high growth need”. Since participants are choosing their tasks (Crowston

et al., 2005) it seems that they will adjust the skill variety and task significance

factors themselves. In contrast it seems reasonable that the organizational structure

of the project will more strongly influence the factors of task identity, autonomy

CHAPTER 6. LITERATURE REVIEW III 147

Figure 6.2: Motivational effects of job characteristics

and feedback. Figure 6.2 shows how a common organizational behavior textbook

summarizes these factors (Samson and Daft, 2005, p. 543).

6.2 Linking motivation and interdependency

Chapter 4 introduced and examined coordination in production. This section ex-

amines the connections between that work and the motivation literature introduced

above, arguing that the concept of risk is an appropriate link between the two liter-

atures.

There are a limited set of studies that have directly examined the motivational

effects of interdependency. Kiggundu brought interdependency together with Hack-

man’s Job Design (Kiggundu, 1981, 1983). He identified two relevant types of inter-

dependence, one with negative effects on outcomes, including motivation, and one

with positive effects. The two types of interdependence identified are received task

interdependence and initiated task interdependence. Thomas (1957) illustrated the

difference by describing two people operating an anti-aircraft gun; one firing and the

other loading shells. The person firing the gun cannot effectively do so unless they

CHAPTER 6. LITERATURE REVIEW III 148

have received a shell from the other person; they have received interdependence. The

person passing the shell initiates the process by passing a shell; they have initiated

interdependence. The relationship is interdependent because both are working to fire

the gun.

Kiggundu argues that received task interdependence is de-motivating because it

reduces autonomy, although he does not explore the mechanism in detail. Conversely

initiated task interdependence is understood to increase experienced responsibility for

the dependent work (and worker) and experienced responsibility is held to improve

motivation, commitment and other outcomes, “Members high in initiated interde-

pendence experience a sense of responsibility to maximally facilitate and minimally

hinder the task performance of others” (Taggar and Haines, 2006, p. 212).

In his presentation Kiggundu draws heavily on Trist and Bamforth (1951), which is

considered a classic socio-technical work and describes interdependence in the “long-

wall” coal mining method in English nationalized coal mines. Kiggundu explains

their finding of differential levels of outcome variables (motivation, job performance,

absenteeism) amongst different roles by arguing that the worse outcomes were found

amongst those roles with high received, rather than initiated, interdependence.

Kiggundu’s argument has never been consistently integrated into the Job Design

literature; however it is more common in the relatively rare cases where the Job

Design study is focusing on teamwork (Bachrach et al., 2006; Taggar and Haines,

2006; Humphrey et al., 2007; Van Der Vegt et al., 2000; Bertolotti et al., 2005).

Furthermore the majority of this work is committed to the idea that interdependence

adheres in the task; it is “rooted at the level of the task . . . required, rather than . . .

optional” (Kiggundu, 1981, p 501).

CHAPTER 6. LITERATURE REVIEW III 149

Risk as a linking concept

Risk plays an important role in both the literature on interdependency and the liter-

ature on motivation, although it is too rarely explicitly examined. The risk of failure

is the link between interdependence and performance in both Thompson’s and Mal-

one & Crowston’s conceptualization of interdependence. The reason organizations

ought to seek a fit between the demands of a task and coordination mechanisms is

because if they do not they risk the reality of lower performance. A lack of alignment

is therefore an organizational risk. This risk, however, is usually conceptualized only

at an organizational level. Individuals are obviously affected by organizational per-

formance in the long run, but may be as likely to attribute this to management as to

the experience of failed interdependency.

The risk of failure also plays a central role in the expectancy-valence, goal setting

and self-efficacy theories of motivation, where experienced failure and perceived risk

can both undermine motivation, and thereby performance. This theory, of course, is

conceptualized at the individual level.

But in FLOSS projects the division between the individual level and the group

level is not so clear cut. Under-motivated individuals cannot be re-motivated by

increased salary, and they cannot easily be assigned to work closely with a well-

motivated and successful teammate, since the project has little, if any, authority over

participants. Projects are therefore quite limited in their ability to choose interde-

pendence strategies that might initiate the positive motivational effects of interde-

pendency discussed above. Furthermore it is clear that attempting interventions like

that would undermine the autonomy of participants and could, thereby, cause further

motivational drops.

In this way the risk of failure identified in the individual motivation literature

is directly related to the risk of failure in the coordination literature. A failure of

interdependency is an organizational level failure in that the progress of the project

CHAPTER 6. LITERATURE REVIEW III 150

is impeded, but its effect is amplified because it is also an experienced failure for the

participants, undermining motivation. In this way the organization of work directly

effects the motivations of individual participants and thus undermines the inputs for

the next episode of production.

6.3 Interim Conclusions

With this background it is now possible to build an explanatory model which is

consistent with the literature and the findings of the dissertation thus far and provides

an integrated answer to the first two research questions (organization and its link with

motivation). This model will provide the groundwork for advancing an answer to the

third, to be undertaken in the Discussion (Chapter 8).

Chapter 7

Formalization: An Explanatory

Model

This chapter develops an explanatory model which is consistent with the literature

and deeply grounded in the two empirical studies reported so far. The processes

described in this model require a set of conditions, found in FLOSS production, if they

are to play out. These conditions provide a way to answer the third research question

and discuss the adaptability of the type of organization that drives community-based

FLOSS projects, a task taken up in the Discussion (Chapter 8).

The model aims to explain three findings so far:

1. Individual work was far more common than Co work,

2. Despite this, projects are able to produce integrated software which is successful,

and

3. Participants appear to defer complex work.

In short the chapter takes takes up the most crucial question thrown up by the

work so far: Why are FLOSS projects so heavily skewed towards individual work,

and how can they succeed like this?

151

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 152

The approach taken in this chapter is to build an analytical model of collabora-

tion, grounded in individual rational behavior. The model restates the problem of

collaboration in FLOSS projects using a stylization of software development.

The analysis then considers two solutions to this dilemma. The first is Co work,

either contemporaneous or sequential, and it is argued that the high risks of this, un-

der conditions of individual motivation, explain the choice to proceed mostly through

individual layered work. The second solution demonstrates a production strategy

that is believed to be novel.

Having demonstrated analytical results in a justifiably stylized model of FLOSS

production, the chapter works back towards empirical reality, relaxing assumptions

and considering their impact on the model. The chapter concludes with a sketch of

a dynamic extension which attempts to incorporate the process of recruitment and

retention.

The model starts with a very restrictive set of assumptions which intentionally

under-describe the reality of FLOSS development. These assumptions actually hand-

icap the “project” in this model, making it less capable than a more empirically true

project. Yet, as we will see, the modeled project is still able to achieve development,

albeit limited in some ways, through a surprising and important result. The reader is

asked to hold off their empirical objections to these assumptions; they are returned to

later in the chapter and systematically relaxed. As they are relaxed the model gains

in empirical veracity and the project gains more potential ways to advance. However

these gains come with risks that, it is suggested, projects must navigate, if they are

to be successful.

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 153

Figure 7.1: Apple’s Architecture Stack for OS X. (From Mac OS X Technology
Overview, Chapter 2)

7.1 The Task of Software Development

When programmers speak with each other about software they often talk about a

“stack” of software and draw diagrams that look similar to those from Apple (Fig-

ure 7.1) and Sun (Figure 7.2). These illustrate a fundamental feature of software: it is

built in layers. The lower layers, such as an operating system, provide services to the

higher layers, such as a windowing toolkit. Only the very top layers, applications,

provide direct utility to users. They are, in fact, called applications because they

“apply” the technologies to users’ problems. The user doesn’t perceive these lower

layers directly, they perceive them mediated by higher layers.

This layering is true not only at the very broad stroke of an operating system,

but is also true within a particular application. For example the ability for a user

to search their email relies on (“applies”) at least two lower layers: the ability to

match text like words, and the ability to display the search results (email display).

http://developer.apple.com/documentation/MacOSX/Conceptual/OSX_Technology_Overview/MacOSXOverview/chapter_2_section_2.html
http://developer.apple.com/documentation/MacOSX/Conceptual/OSX_Technology_Overview/MacOSXOverview/chapter_2_section_2.html

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 154

Figure 7.2: Sun’s architecture stack for the Java Development Kit 5.0 (From Sun JSE
1.5 Documentation)

Figure 7.3: Software is layered and additive: higher layers extend its functionality by
building on services provided by lower layers.

Operating System

 Network StackWindowing Toolkit

IM protocol library

User Interface

Extending
functionality

As these layers extend upwards they extend the functionality for the user, as shown

in Figure 7.3

In addition to, or perhaps as a result of, being built from layers, software is

additive. That is to say that additional layers can be added without necessarily

changing the lower layers. Furthermore, if a layer is no longer needed it can be

removed without necessarily affecting layers below it (and since it is not being used

there are no layers above it!). This is, of course, merely a way of modeling software

development and it does simplify reality. It is quite possible to build software in

monolithic chunks, without the layering described here, yet it is equally possible to

http://java.sun.com/j2se/1.5.0/docs/index.html
http://java.sun.com/j2se/1.5.0/docs/index.html

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 155

Figure 7.4: All layers have functional dependencies on those below them. Gray layers
have direct utility, and white layers have utility dependencies on gray
levels above them

functional
dependency

(always)IM protocol library

User Interface

gray shows
'user utility'

utility
dependency

(white to gray)
White without gray

above has no
'user payoff'

build it through layers and the layer metaphor is very useful in modeling the task

that developers face in building FLOSS.

Functional and Utility dependencies

The fact that software can be built in layers gives rise to two important types of

dependencies between software layers. Figure 7.4 highlights these relationships. From

top to bottom the layers depend on each other functionally; without these layers the

code will not compile and the application simply will not be able to run. In the

diagrams to follow all higher layers depend on an unbroken stack of lower layers, with

the higher layers said to have a functional dependency on the layer beneath it.

Figure 7.4 also shows the second type of dependency, called a utility dependency.

Some layers of software have no direct utility to the user. Rather they depend on

higher layers to expose their functionality, thereby releasing their value to a user.

In these diagrams layers which have direct utility are colored in gray, while layers

which rely on higher layers for their utility are colored white. The Tasks reported

for the Fire project in Chapter 5 include many situations like this, such as when

the iconv library was incorporated. The iconv library is a very capable character

encoding conversion library, but on its own and newly added it offers no utility to

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 156

Figure 7.5: Without a network stack, shown missing as a box without a border, an
email client is incapable of delivering its utility. The lack of utility is
shown by giving the gray box a dotted line

Network Stack

Email Client

Missing
functional dependency

(no border)

The code cannot run
therefore no payoff

(gray but dotted border)

an end user. Rather it forms a new layer on top of which user interface and other

integration routines unlock its potential.

From the perspective of development these two types of dependency have two

implications. The first is that a missing functional dependency removes the utility

from layers that depend on it, since without a full stack the software can’t run and

the gray layer cannot deliver its utility to the user. Figure 7.5 shows this situation. In

Chapter 3 such a situation was presented, where the author was unable to complete

his metadata plans due to the absence of a suitable library.

The second implication is that there is no restriction that lower layers cannot also

have direct utility; it is not the case that all utility must exist in the top layer alone.

Figure 7.6 illustrates this situation with two features of an instant messaging client:

buddy display and buddy search, as encountered in the “new search” task in Fire

Task 32. Buddy search clearly depends on being able to display buddies, otherwise

the results can’t be displayed or acted upon. Yet buddy display is already useful,

even without the addition of buddy search. Search has a functional dependency on

display, but display does not have a utility dependency on search. This is shown in

these diagrams by stacking two gray boxes on top of each other. The majority of the

Tasks considered in Fire and Gaim were like this, with new functionality building on

already useful technologies.

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 157

Figure 7.6: Layers with direct utility can also be built upon, so that there is a func-
tional dependency without a utility dependency, shown with gray on gray.

Buddy Display

Buddy Search

Buddy Search has a functional
dependency on Buddy Display

Buddy Display does not have a
payoff dependency on Buddy

Display (gray to gray)

With this background we now turn to the model itself, beginning with a brief

review of rational choice models, then building up needed assumptions and finally

considering how the model plays out through multiple turns.

7.2 Rational Choice Models

The model presented in this chapter is a rational choice model. It attempts to cap-

ture essential features of individual’s decisions through a simplified, stylized model

of human decision making. These models are most familiar from micro-economics

where they form the foundation of consumer choice theories, leading to well known

predictions such as supply will equal demand if the price of a good is allowed to vary.

They are also the foundation of game theory models, as well as the underlying model

of action in multi-agent simulation models. Individuals in these models are termed

agents, which emphasizes that they are simplifications of humans, albeit analytically

useful.

The model presented in this chapter is quite simple, yet is useful for explaining

the two empirical findings in the previous chapters: the pre-dominance of individual

work and the use of deferral as a production strategy.

The agents in rational choice models are making a choice between alternatives,

such as choosing which basket of products to buy, or which investments to make. To

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 158

make their choice they assess the benefits and the costs of each course of action and

are constrained to choose the course of action that yields the greatest net benefit to

them. Benefits and Costs do not have to be limited to be entirely selfish, it is possible

to argue that a benefit for others is also an outcome which will please the rational

agent, and therefore result in an increased benefit to that individual. Likewise there

is no need to assume that a benefit for others is a cost to the agent, although that is

a common assumption in market competition models (where a sale to a competitor

is a sale lost to others).

The basic model is simple: an agent will make a choice to act when that choice

yields the greatest difference between benefits and costs (Assumption 1 in Table 7.1).

Essentially the agent will act if the Benefits exceed Costs:

B > C (7.1)

Costs are most usefully understood as “opportunity costs” which are the benefits

forgone by not choosing the next most attractive alternative. For example if an

individual is choosing between eating an orange or an apple, the cost of eating the

orange is the enjoyment/sustenance—the utility—that the apple would have provided

and vice versa. This allows rewriting Equation 7.1 so that the agent will act if Benefits

exceed the Opportunity Cost of next most beneficial choice.

Bchoice > Balternative (7.2)

Of course an agent cannot see the future; they can only make their decision on

their expectations, their estimates, of both the benefits and the costs of the action.

In short there is a risk that the full benefit will not be realized, while there is no risk

that the opportunity cost will be incurred. This allows restating the left-hand side of

the decision equation, where Uoutcome is the Utility derived from the outcome and R

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 159

is the risk that the agent’s expectations are wrong, and their decision will not lead

to the desired outcome.

E (Bchoice) = Uoutcome × (1−R) (7.3)

The Expectancy-Valance theories of motivation outlined in Chapter 6 helps to

understand risk here, pointing out that there are in fact two different expectancies in

play and a risk at each stage. The first is the expectancy that the actor’s effort e will

result in a certain performance p, which can be written as a probability: P (e → p).

The second is that that performance p will yield the expected outcomes o and thus

the benefit: P (p → o). These probabilities are expressing the probability of the

successful outcome, so there is no need to subtract from 1. Now the equation can be

further restated, with all components being Expected values:

E (Bchoice) = E (Uoutcome)× E (P (e→ p))× E (P (p→ o)) (7.4)

In actually, of course, there are real values for P (e→ p) and P (p→ o), which will

determine whether the agent, having committed to the choice, will in fact receive the

benefit. The agent doesn’t know these real values in advance, but experience may

reveal those to the agents over time. In short the agents can learn that their expec-

tations are wrong, and will attempt to adjust them towards the real values. However

agents are limited in their ability to predict the future regardless of experience due to

its complexity: the agents are therefore said to have be bounded rationality (Simon,

1957). Accordingly we assume that agents are good, but not perfect, judges and are

aware of their limitations, thus E (P (e→ p)) ≡ P (e→ p) and allowing P (e→ p) to

be less than 1 (Assumptions 3 & 4 in Table 7.1).

To illustrate this imagine a rational agent trying to decide whether to sell a magic

wand prop, or to wave it in the air to magically produce money. Uoutcome is the value of

that money, P (e→ p) is 1, since the agent presumably can wave a wand if he chooses

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 160

to (and knows this) but, since our agent doesn’t believe in magic, E (P (p→ o)) is

zero. A rational agent with these beliefs will always chose to sell the wand. Suppose

a second agent does believe wholeheartedly in magic (E (P (p→ o)) = 1), they will

choose to wave the wand, forgoing the selling opportunity. Of course, since the real

value of P (p → o) is 0, the agent will not receive the expected benefit. Eventually

the agent will adjust their expectations.

Conversely imagine an agent faced with the choice as to whether to try to make

it in professional sports by entering the draft, or alternatively to spend the week

of the draft on vacation. The rewards of success (E (Uoutcome)) are high, and there

is a reasonable expectation that excellent performance at the selection combine will

lead to being selected and therefore getting paid (E (P (p→ o)) = 1), since the real

value of P (p→ o) is 1 by rule and is well-known (drafted players receive guaranteed

high-paying contracts). The agent, however, is realistic about their skill levels and

knows that there is zero chance of being selected E (P (e→ p)) = 0. The agent will

chose to go on vacation instead.

7.3 Assumptions

This section details a set of assumptions which are necessary for analytical clarity

and justified through literature and the participant observation experience detailed

in Chapter 3. These assumptions are stylized but aim to capture important aspects

of the FLOSS situation. Unlike many analytical models most assumptions in fact

make the task harder for the project. Nonetheless the majority will be relaxed in the

discussion below, after the initial analytic point has been made (indicated in Table 7.1

by a !). This practice provides clarity to the presentation. The assumptions are

summarized in Table 7.1 in the order they are introduced in the text.

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 161

Table 7.1: Model Assumptions (!shows which are later relaxed)

Assumption (Justification)

Bounded Rationality
1 ! Participants will only work for a utility payoff (Parsimony)
2 ! Participants are motivated only by their own use of the software (Parsi., Lit. and Exp.)
3 Participants are good, but not perfect, judges of task complexity (Parsimony and Exp.)
4 Participants know the limitations of their judgement

(expectations approach reality) (Parsimony and Experience)
Other Assumptions

5 ! All participants have the same set of skills and availability (Parsimony)
6 ! Participants only know their free time for the next turn (Parsimony and Experience)
7 ! There are no exogenous sources of code or solutions (Parsimony)
8 ! Participants can build on existing layers without assistance from authors (Experience)
9 Contributions are always shared under an open source license

(non-revokable, no royalties, allows derivative works) (Parsimony, Lit. and Exp.)

The model considers agents who are potential developers to a FLOSS project. It

is assumed that agents have a limited amount of spare time, outside their normal

course of life including things such as paid work, family life etc. It is also assumed

that these agents regularly use the software outside their spare time, perhaps for

work, for study or for managing a family vacation. This assumption is motivated

by the experience in BibDesk, where the “real-life” use of the software for academic

writing was important, as described in Chapter 3.

Initially it is assumed that agents are only motivated by a desire to improve the

software so that it improves the effectiveness of their other activities (Assumption 2 in

Table 7.1). That is to say that their motivations for participation are entirely instru-

mental. (This assumption will be relaxed later). The improvement in effectiveness is

therefore the value of Uoutcome and is known to the agent (E (Uoutcome) = Uoutcome).

The regular use of the software allows the agent to see opportunities to improve

the software (and thereby the effectiveness of the rest of their activities). These

opportunities could be to remove annoyances, such as a clunky interface or data-loss

risking bugs, or to extend the capabilities of the software through new features. In

terms of the simplification of software development described above both of these

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 162

outcomes involve the creation of a layer of software, which can either be thought of

as re-writing an existing layer to fix a bug or adding a new layer to extend features.

For simplicity we assume that a new layer is being added.

Also for simplicity the choice facing the agent is constrained to be binary: they

either choose to spend their time attempting to contribute to a FLOSS project or

they choose not to. What they do with their spare time otherwise is immaterial, but

for the sake of narrative we will model it as though the other choice available to an

agent is to meditate. The agents are assumed to be good meditators and meditation

is assumed to yield some benefit in the rest of their life (through improved focus or,

perhaps, karma). Meditation, therefore, is equivalent to the ‘null’ choice in investment

models, which is usually to place one’s money in a bank account accruing low but

certain interest. In this model the non-code choice is a choice to meditate, which

always produces a known payoff. Choosing to code means that the agent looses the

benefits of meditation, so the known payoff of meditation is always the opportunity

cost of choosing to code.

The model requires the agents to make two assessments of their expectations.

First they have to estimate whether the effort they have available can result in the

needed performance, estimating P (e → p). They inspect the current codebase and

make their best estimate of the amount of time it would take them to build the

required layer. Of course this depends on a number of factors. Firstly they have

to be able to read and understand the existing codebase. Secondly, they have to

estimate their skill levels and thirdly, the complexity of the task. These elements

enable them to assess the difficulty of the task and thus the time likely required for

the task which they then compare against the time they have available. The agent

sets their expectation of P (e → p) based on the chance that they will be able to

complete the task with the time available. For example if the time they had available

was three hours and they just need to fix a spelling mistake then their estimate of

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 163

P (e→ p) would be high, but if they needed to integrate a new spell checking library

in that three hours then the estimate of P (e→ p) would be very low.

Having agents make this assessment requires further assumptions (Assumptions 3,

4 & 5). Initially all agents are assumed to have the same level of skill (this is relaxed

below). They are assumed to be good, but not perfect, judges of their skill level.

Agents are also assumed to be good, but not perfect, judges of the complexity of

the tasks, and are assumed to be good but not perfect at understanding the current

codebase. The agents are assumed to know their limitations. These assumptions

create a small chance of failure every time a developer undertakes a task. At the

stage of comparing complexity to time available, agents are assumed to know their

time availability for the length of the turn, but not beyond that (Assumption 6).

Agents will not rely on possible availability in future turns (this is relaxed below).

The second assessment that the agents make is to assess P (p → o) which is an

assessment of the probability that accomplishing the task set forth will enable them

to use the application in such a way as to unlock the utility that motivated them and

achieve the expected rise in productivity. For the case of individual work this is set

to, and is expected to be, 1 (i.e. certain). This reflects the fact that the agent has the

codebase, a compiler and can compile their layer with the application. In short this

is an assumption that the agent is able to successfully integrate their changes into

the application. These assumptions and therefore this term will be varied below.

It is also assumed, at this stage, that there is no source of exogenous code or solu-

tions; the development effort of the developers is the only source of advancement for

the project (Assumption 7). This rules out outsourcing through payment or the dis-

covery of libraries of code from outside the project. This is an obvious simplification

and will be relaxed below.

Further it is assumed that it is possible to build on existing code without needing

to speak with the original author(s) (Assumption 8). This doesn’t necessarily imply

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 164

that the code is perfectly readable or perfectly documented, but that the developers

are, with time, effort and experimentation, able to read and understand how to use

it. The difficulty of doing so is incorporated into the agent’s decision about their

probability of success. This assumption is justified by the participant observation,

but it too will be varied below.

Finally there are two assumptions about contributions, once they are successfully

coded. Firstly, it is assumed that the agents all share their contributions (Assumption

9). This is justified by the understanding that once a feature or fix is accepted into

the public code-base, others will refrain from removing or undoing it (provided it is

functional). The decision to share is rational because this ensures that the layer that

the agents builds will continue to function and deliver productivity improvements

(Uoutcome is an assessment of continuing future benefit). This group commitment

therefore saves the agent considerable future maintenance costs, much in the same

way that corporate IS departments attempt to minimize internal customizations to

ERP systems, especially if those might break during upgrades.

Secondly, contributions are shared under an open source license (a license that

respects the OSI principles, Assumption 9). This has three important implications:

contributions are not revokable; they cannot be withdrawn by the contributor. This

does not mean that they cannot be appropriately altered, but that even if a developer

were to regret their decision to contribute, they would not be able to remove the

layer. This is a result of the use of an open license and considered in more detail in

Chapter 8. An open-source license also ensures that contributed code can be relied

upon and used by others: derivative works are allowed and no royalties must be paid.

It should be noted that this model is not attempting to explain this decision to reveal,

rather it is attempting to consider decisions as to the style of work (individual or in

groups) undertaken.

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 165

Again, these assumptions are made for analytical clarity. The more empirically

unrealistic of them are eventually relaxed and their effect on the model investigated,

see page 168 or page 176.

7.4 Model Analysis

With these assumptions and background, it is possible to consider an individual

agent making a code or meditate decision. We are going to fill out the elements of

the equations on page 158 and page 159 with illustrative examples.

First we create some known elements:

• The agent has 10 hours available for the next turn (a week, say)

• The agent knows that meditating for these hours would improve their output

in the future by 7 academic papers1. Therefore the opportunity cost of coding

is 8 units. We now know that the agent will chose to code if they expect that

their choice will result in future improvements greater than 8 papers.

• P (p→ o) is known to be 1, as discussed above.

• The agent consults their preferences and conceives an improvement they would

like to make to the application, such as automating a library lookup for online

journals. They estimate that this will enable them to improve their output in

the future so they will publish 10 more papers this year. Therefore Uchoice is set

to 10.

• The agent then examines the codebase, judging the complexity of the work and

comparing that to the time they have available. The agent decides that the

task is probably feasible within 10 hours but knows from experience that it

may prove more difficult, so that their estimate will be wrong one in five times

and their effort will not result in working code after 10 hours of work. Therefore

E (P (e→ p)) = 4
5
.

The decision equation is then simple:

1Of course this is quite unrealistic but simple whole numbers help the illustration because they
simplify the math.

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 166

B = 10× 8

10
× 1 = 8 6> 7 (7.5)

The expected benefit is greater than the opportunity cost (B > C), so the agent

will choose to code rather than meditate.

In this way the model proceeds in a simple manner. Each participant consults their

current set of motivating outcomes and the current codebase and assesses whether

they can, given their skills and available time, undertake a development task, making

their best assessment of the easiest way to change the codebase to achieve the desired

outcome. If they estimate that the benefits outweigh the costs they begin work.

If they successfully complete the work it is available to all the other developers

in the next period, for others to assess their options. Unsatisfied motivations where

the developer either chose not to act or did not successfully complete the work will

survive through the next turn.

Backwards-only dependencies

The simplest situation is that a participant inspects the codebase and their set of

desires and finds a task which is sufficiently motivating, but is also within their

abilities given the time known to be available to them. Such a situation is shown in

Figure 7.7: As development proceeds over time through layering, functional depen-
dencies become backwards only dependencies. They depend only on what
is already present.

New Feature

Time 1 Time 3Dev Time

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 167

Figure 7.7, where a gray layer (depicting utility to its developer) is layered atop an

existing gray layer.

These situations can be called “backwards-only” dependencies: all that is relied on

is the current codebase and its permanent availability (as guaranteed in the FLOSS

context). If previously contributed layers could be removed then the payoff would

not be guaranteed, since if the layers were removed the code would lack its functional

dependencies and would be unable to release the utility desired by the developer.

The dependency is “backwards” in time, depending on actions already completed,

irrevocable and therefore certain, actions of others. All the Solo Tasks found in Fire

and Gaim were like this, as was the implementation of the “Container” column in

BibDesk, reported on page 42, in Chapter 5.

The Missing Step situation

A second situation faced by a participant would be inspecting the current code base

and their desires and seeing that the work needed to implement a desired feature is

greater than their skills will allow them to accomplish in the time they know they have

available; if they start they will fail. This can be understood as setting E (P (e→ p))

so low that meditation will always provide a higher expected return, regardless of the

size of Uoutcome. In our graphic simplification this can be represented by depicting the

feature as two separate layers, as in Figure 7.8.

An individual agent under the assumptions above will not work to try to imple-

ment both layers, nor is it rational to work on either in isolation. This is because

without the white missing step, the payoff of the gray layer is not available (a miss-

ing functional dependency). Without the potential to finish a gray layer in the time

available the white layer will not be built (since it is missing a utility dependency).

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 168

Figure 7.8: A missing functional dependency becomes a forwards and backwards de-
pendency

Needed Step

New Feature

Time 1 Time 3Dev Time

This is a fundamental dilemma in collaboration; it is in fact just a stylized way

of restating a core problem of collective action. We have already encountered these

situations in this dissertation. One such situation was related in Chapter 3 where the

author’s desire to implement automatic metadata reading and writing was blocked by

the absence of libraries to edit PDF XML metadata (and the author’s lack of ability

to implement these alone). Other such situations were likely behind the long-running

episodes discussed at the end of Chapter 5. The following sections consider two

solutions to this situation: collaboration, which is well known, and deferral, which is

novel.

Collaboration as a solution

A natural way to resolve this situation is to have agents communicate and potentially

make agreements between themselves. In this way they are free to discover other

participants who are also motivated by the New Feature in Figure 7.8. Together they

can assess that two developers working together could accomplish the work if one

works on Needed Step and the other on New Feature, as depicted in Figure 7.82.

2These agreements can only be for concurrent work, not sequential. This is because developers

are constrained to only rely on availability for the current turn and sequential collaboration would

require the first developer to trust that the second developer had availability, but they do not. The

point is not crucial, and see below for a relaxation that opens up this possibility.

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 169

The capacity to work together opens the way to resolving the dilemma, as depicted

in Figure 7.9. The question, then, is why is it so uncommon in FLOSS development?

The answer lies in the concept identified in Chapter 6 as linking the literature on

interdependency and coordination and motivation: risk.

From the perspective of either developer, this agreement introduces a new source

of non-completion risk. This is because any developer’s collaborator also has a chance

of failure (P (e→ p) < 1) and therefore may not complete their part of the agreement,

rendering the payoff unavailable (either because a functional or a payoff dependency

is unsatisfied.) From the perspective of the first developer this means that regardless

of their ability to complete their part of the task, the reward may not be available.

This can be incorporated into the model as a change in the expectation of the second

part of the risk term, E (P (p→ o)) where regardless of the success in performance

there is a risk that the expected outcome will not eventuate. Of course this cuts

both ways, reducing the expected value multiplicatively and sharply decreasing the

likelihood of agreement and action.

P (e → p) is an estimate of the probability that effort in the time available will

result in one of the two layers required. If we, as above, set this to 0.8, then the

decision equations of both actors look like this:

10× 0.8× 0.8 = 10× 0.64 = 6.4

This is now less than the benefit of meditation (7), so there will be no agreement

and neither participant will choose to code over meditate. Essentially each agent’s

P (e→ p) becomes their partner’s P (p→ o).

In addition, concurrent development introduces a new, well known, problem. For

two layers to work together they have to suit each other, what Crowston (2003) calls

a usability dependency. Until now this has been assumed to be easy (although see 7.5

below) since the developers have only been building on finished code and it is assumed

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 170

Figure 7.9: The missing functional dependency can be added if two developers are
able to work concurrently, although the risk of non-completion rises due
to partner failure and coordination costs

Time 1 Time 3
Needed Step

Needed Step

Dev Time

New Feature
New Feature

Interpersonal
dependency

they can understand this without discussion with the authors. This is not true of

concurrent work because it is not available for inspection as it is being simultaneously

developed. This can be called a usability coordination cost and this extra difficulty

can be modeled by increasing the risk of non-completion (for either participant), by

decreasing P (e → p). Furthermore this is known to participants—and known to

affect their partner—so it is therefore transferred to the expectation of the P (p→ o)

term. Representing the increased risk of concurrent programming as θ this makes the

collaborative decision condition,

Uoutcome × (P (e→ p)self × θ)× (P (e→ p)other × θ) > C (7.6)

If we set θ = 9
10

, saying in effect that concurrent programming difficulty alone

causes a failure for the agent 1 time out of ten, and using the values from above, the

decision equation becomes:

10× (0.8× 0.9)× (0.8× 0.9) = 10× 0.722 = 5.1

Algebraically it is possible to see that the utility required to make the choice to

collaborate a rational one must be substantially larger (where p = P (e→ p)):

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 171

U × (pselfθ)× (potherθ) > C (7.7)

assuming that p and θ are the same for all participants (and all terms are positive)

that gives:

U(pθ)2 > C (7.8)

U >
C

(pθ)2 (7.9)

if C is set to 7 and p set to 8
10

and θ set to 9
10

, the value of U for which agents will

agree to work together can be calculated:

U >
7

(8
10
× 9

10
)
2

U > 13.5

The required value of U , therefore would be nearly double the opportunity cost of

the alternative. The absolute size of this, of course, is dependent on the expectations

of the agents regarding failure. The point is that the risks are multiplicative and both

P (e → p) and θ are less than 1; concurrent work is substantially more risky than

individual work.

Interestingly there are no clear-cut examples of this type of agreement in the Fire

and Gaim data, even amongst the Co work tasks. The closest is in Fire Task 30,

where a developer remarks in a CVS log message, “Jason, you have the set status

routine now”. This remark does seem to imply that the author was aware that Jason

needed this routine and perhaps wrote it for him (although it seems just as likely that

the developer needed it as well). The analysis did not find any evidence of preliminary

negotiation, or planning, even for this Task. The other Co work tasks have more than

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 172

one developer, but little indication that one is explicitly relying on the other’s future

performance. Of course there may have been out of band negotiations, or perhaps

the developers are willing to work without upfront agreement due to past experience

or perhaps they are simply happy to have help if and when it arrives, but would work

on independently regardless.

Of course the above models agreements as being between two participants only,

but there is nothing stopping larger numbers of participants agreeing to take on even

more complicated tasks together. However these sort of agreements are exponentially

less likely as the failure of any single individual undermines the payoff for all, and

further increases risk through extra coordination effort which is now between three

or more simultaneously developing components, rather than two.

Finally, until now we have assumed that communication and negotiation for an

agreement is costless. It is not, since the two agents must discuss and agree on an

outcome and a method of getting there, a process that can be quite costly, especially

given the environment of lean communications and unreliable attention that prevails

in FLOSS projects. Furthermore these negotiations are separate decisions with uncer-

tain outcomes, which detract from time available to implement simpler, more certain,

individual tasks. These costs are identified as transaction costs (Williamson, 1981).

They could be modeled in a number of ways, such as introducing a pre-turn negoti-

ation, or by introducing another term akin to the risk of concurrent programming.

Either way it would serve to further decrease the expected utility of negotiating a

collaborative solution to the Missing Step problem.

In this way collaboration provides a solution to the dilemma but it is one that

increases risks in a super-linear manner due to the costs of coordination and trans-

actions. The actual effect of these risks depends on how the participants estimate

them, how often non-completion is a problem and any potential costs and risks of

negotiation, but in the end always depends on the size of the expected payoff (the de-

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 173

sirability of the feature). In some situations, particularly when the task is important

or much desired collaboration still may be a rational choice.

At this stage the model has explained why Co work should be expected to be

less likely than individual work, as observed in all three case studies. In short, it

is more risky. Setting aside, until below, that some Co work was in fact observed,

the question arises as to whether any substantial progress is possible for the project

under the current model, which speaks to the second question of this chapter: how

can complex interdependent software be built when individual work is so dominant?

Deferral as a solution

The answer lies in the fact that there is another possibility available without intro-

ducing communication and agreements and it has already been seen in the empirical

components of this dissertation. This is for the developer to defer the work for the

current turn, and to wait and see how the codebase changes over time. It is possi-

ble that, through the work of others on the project, the situation will have changed

sufficiently that New Feature is now possible with only individual work within one

period. In short, from the perspective of a single participant, Needed Step simply

appears, and turns the dilemma into a relatively simple Backwards-only dependancy.

What trickery is this? Needed Step is white; it is a layer without a utility payoff

and therefore will never be built by participants. It can’t come from an exogenous

source, because we are assuming that these do not exist. How then does Needed Step

emerge?

The answer has to do with the extraordinary flexibility of software and the situated

nature of the developer’s cognition. Initially a task may seem to require work that

is otherwise valueless, but as other work—perhaps just individual backwards-only

work—changes the software over time another way to build New Feature may become

apparent.

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 174

Figure 7.10: A missing step dilemma can become two separate backwards-only de-
pendencies, if the missing functional dependency proves to have an alter-
native which itself has a payoff. Note the elongated and indeterminate
time scale.

Time 1

Feature C

Time 3 Time 4+

Feature C

New Feature

Time 3+

Recognition of Feature C
as an alternative to
Needed Step

Dev Time

This can occur because, as outlined above, a developer makes their best assessment

of the easiest way to change the code to achieve their desired outcomes and bases

their calculation of P (e → p) on that assessment. The Needed Step/New Feature

dilemma is therefore not a hard fact—it is not a “structural requirement” of task

as discussed in Literature Review II on page 73—but the result of a developer’s

cognition. And the cognition of developers—their estimation of the work needed to

build New Feature—is highly situated: it responds to the codebase as it is now, not to

all possible configurations of code. As the codebase changes, new and often surprising

ways to accomplish tasks emerge. This process was observed in all three case studies,

although was seemingly more frequent in Fire and BibDesk than Gaim.

In this way, as depicted in Figure 7.10, potentially problematic interpersonal de-

pendancies, requiring trust and communication, can be converted to two backwards-

only dependencies, and accomplished through individual work alone.

This can be incorporated into the rational choice model with an acknowledgement

that the deferred work may not ever be completed, and if it is it will be delayed and

therefore reduce the utility of the feature. Note however that agents are not choosing

to defer the work as an alternative to both working and meditating, deferral does not

take any time, so the benefits of meditation are still available. Note also that deferral

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 175

is also not a commitment on the behalf of the agent to undertaking the work in future.

In this way one can remodel the decision as between (a) working uncertainly now and

likely failing and (b) meditating now and working more easily later. For deferral to

be preferred to collaboration, then, the effect of uncertainty and delay must be be

lower than the multiplicative combination of collaboration risks shown above.

Of course deferral is indistinguishable from simply choosing not to work in the

current turn, in this way it also operates whenever an agent decides that the task is

not achievable either individually or with others through negotiating and performing

an agreement. It is relevant that deferral eases the implications of choosing not to

work; the opportunity to work is not one-time, nor does a single agent’s decision not

to work affect the ability of other agents to work in the future. From an organizational

perspective, the cost of an individual agent choosing not to work is relatively low.

There is no need to over-state this point; it is enough that deferral can and

does happen. Certainly it does not always happen and for some types of tasks it

probably never happens. Even when it does there is no way to estimate when it

might occur successfully. In any case deferring work in the hope it gets easier is far

from a wonderful solution: it is at best slow and from an organizational perspective

is quite often totally ineffective, especially in circumstances where the time-cost of

upfront investment operates (see the Dicussions). In the BibDesk project, the author

of this dissertation deferred his work to implement readable metadata in PDFs and

that task still hasn’t been completed today. Nonetheless, deferral is a novel solution

to the missing step dilemma and one which is in-keeping with the motivational and

technological environment of FLOSS development.

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 176

7.5 Relaxing assumptions

Neither solution outlined above is, on the whole, wonderfully attractive. Happily real-

world FLOSS participants are not as constrained as the model has so far assumed.

This section fulfills the promises above by relaxing assumptions in sequence. Note that

unlike many models, the majority of relaxations make the dilemma less pernicious

and easier to overcome. Some assumptions, notably easy integration, do have the

opposite effect.

Helping communication

Having developers communicate, even without making agreements, improves the sit-

uation for the project. It does this in two ways. The first is to allow others to help

participants discover the outcomes which will provide payoffs to them. A common

case is for a user to report a bug, or request a feature. If the developer agrees and

is therefore personally motivated by this new information, then they have additional

outcomes which can motivate work. The assumptions above bind individual agents

to generate tasks only from their own use of the software, allowing input from oth-

ers gives the agents the benefit of other’s experiences as well, perhaps allowing an

agent to discover a potentially damaging bug and be motivated by a desire to avoid

it happening to them. Note that communication can play this role without altering

the assumption that agents are only motivated for their own benefit, these benefits

are quite apart from seeking to serve others (see below).

A second potential benefit of allowing communication is to allow others, especially

other developers, to help conceptualize the causes of a bug, or the steps needed to

achieve a desired outcome. In effect this allows the transformation of Needed Step

situations towards something closer to a backwards-only dependency. This is similar

to the discussion of deferral on page 173 but rather than playing out over time as the

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 177

Figure 7.11: A sequential dependency. This helps solve the dilemma, but introduces
both inter-personal dependency and delay as the work is not available
for use in until time 4

Time 1 Time 3

Needed Step

Needed Step

New Feature

New Feature

Time 2 Time 4

Interpersonal
dependency

Dev Time

codebase changes the situated cognition of the developer, the re-conceptualization can

occur in a single turn and the work can proceed at a quicker pace. As Eric Raymond

quotes Linus Torvald, “Somebody finds the problem and somebody else understands

it. And I’ll go on record as saying that finding it is the bigger challenge.” (Raymond,

1998).

Assumptions about availability

There are two assumptions in the model about time. The first is that participants

cannot predict their availability beyond the current turn. This can be relaxed in two

ways. The first is to allow participants to assess their availability for individual future

periods. This combines with agreements, as described above, to make it is possible for

two (or more) participants to plan to work together sequentially to achieve a desired

outcome, with one participant having current availability implementing the Needed

Step and the second participant, having availability at t + 1, implementing the New

Feature. This is shown in Figure 7.11.

Clearly this shares some of the features of concurrent development outlined above.

For example a failure by either is a failure for both, so the P (e → p) of each is the

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 178

P (p → o) for the other. Similarly the transaction costs of negotiating an agreement

are still present. Sequential development, however, does not have the additional

risks of both components shifting simultaneously; the second developer would just

react to the state of the first layer as with backwards-only dependent work. However

because sequential development delivers the utility of the layer later, there should

be some discounting factor. In this way a choice between concurrent and sequential

development is a trade off between concurrent coordination costs and delay.

A second assumption about availability could allow participants to better under-

stand their general future availability. Indeed participants could expect to have a

constant availability (such as expecting 10 hours availability each week for the fore-

seeable future). This would enable participants to engage in their own sequential

development, working on tasks which take longer than a turn, provided their utility

was high enough and the delay discount was not too large. Of course this would

still multiply the risk of failure. Further, participants could be inaccurate in under-

standing their future availability and find that real life interferes and delays the work

sufficiently that its utility is undermined and work eventually abandoned.

A distribution of individual capability (skills and time)

The second assumption to relax is that the contributors have the same set of skills

and productivity. Rather these aspects can be modeled as a distribution of both skills

and productivity amongst the developers. This can be done without altering either

the time-availability or time-horizon for payoff.

The immediate impact of this is to allow the existence of developers for whom the

implementation of Needed Step and New Feature (from Figure 7.8) is converted to a

single step. This might be for two reasons. Firstly, the developer might have expe-

rience of Needed Step through another program, and is therefore able to implement

it quickly. Secondly, the developer is able, due to their superior skills and productiv-

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 179

ity, to complete both of the steps in the free time they know they have available to

them. Graphically this either merges the white and gray boxes, or it enables some

participants to build two boxes within one turn.

Relaxing this assumption leads to a more realistic model where some tasks are

hard for some developers while being easy for others. Indeed it is often said of open

source projects that they have “code gods” who are an order of magnitude more

productive, and whose work makes leaps on top of which other developers can build

smaller, but useful, contributions.3. Changing this assumption would complicate the

calculations of risk in collaboration, since one developer might have less chance of

failure than the other.

Just as there is a range of tasks with different difficulties and skill requirements,

there can be a range of developers with different skill and productivity profiles. In this

way the project can speed through some Needed Step dilemmas, provided a developer

can be found for whom the task is comparably easy and provides sufficient utility to

that person.

This points to the importance of continual recruitment, above and beyond added

generic effort: by widening the diversity of contributors the project has more chance

of solving these thorny issues. This is true even if contributors cannot contribute

large amounts of time.

Exogenous change

In the real world, FLOSS projects do not exist on their own; rather they are part of

an ecosystem of software and other projects. Although differing licenses reduce the

3González-Barahona and Robles-Mart́ınez (2003) confirm the often observed skew of productivity

in FLOSS projects, but also argue that different people or groups step forward at different times, in

the majority of successful projects, questioning whether so-called “code gods” are in fact particular

individuals

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 180

possibility of code movement between some sets of projects, in general developers have

a great deal of software at their disposal. This is especially true of libraries, which

are packaged and documented for re-use. As discussed above in section 7.1 these

libraries can provide significant functional services. By relaxing the assumption that

no solutions or code are exogenously available it is possible for individual developers

to overcome the Needed Step dilemma by recognizing a library as providing the

step, adapting it and pursuing New Feature in the course of their single turn, in a

manner analogous to re-conceptualizing the problem with assistance. The developer,

therefore, is assessing not just the current codebase but also the codebase of other

projects and out to the whole ecosystem of (compatible) FLOSS code.

Even with the large amount of code available this turns out to not be as great

as it seems at first. Many important components are not available as libraries and

discovering appropriate code is far from effortless. Such search costs reduce the

likelihood of projects adapting exogenous code. There is little doubt that such search

effort, as well as the “not invented here” syndrome (perhaps linked to learning, see

below), limits the progress that could be achieved through code reuse.

Nonetheless it is clear from the archival study of Fire and Gaim that new underly-

ing libraries provide substantial leaps forward. In the period studied Fire integrated a

new library (iconv) and updated three (libmsn, libyahoo2 and libfaim). A developer

may integrate a library for a specific Task, but the other features of the library are

now more easily available to other developers as they estimate the work needed to

implement the task they are motivated by. Thus libraries are “bundles” of potential

features which can spark new rounds of creativity amongst developers.

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 181

Alternative motivations

The set of assumptions above assumes that all developers are only ever motivated by

the use they personally can make of the software. This assumption is fundamental

to some of the results of the model outlined above, but is also clearly not realistic.

Studies have, of course, found a range of motivations amongst contributors in

open source beyond the product itself, as discussed in the first Literature Review

(on page 15). In particular three additional sources of motivations have been cited:

intrinsic motivations, reputation and helping others. Intrinsic motivations can refer

to a whole set, but include learning, fun and ideologies.

Intrinsic Motivations

Once intrinsic motivations are allowed in the model the situation can vary quite sig-

nificantly because they change the types of payoffs permitted. Intrinsic motivations

allow participants to implement steps which were previously ruled out because they

did not provide immediate functional payoffs. This has the helpful effect of making

it possible to turn a ‘white’ box (a step with functionality but no immediate instru-

mental utility) into a ‘gray’ box where the payoff is, for example, the learning the

developer anticipates during development. This allows intrinsically motivated devel-

opers to choose to implement gaps, such as Needed Step, only because they will learn

from the activity, regardless of whether they, or someone else, ever implements the

New Feature that has a functional dependency on the Needed Step. Of course their

contribution could enable another to build New Feature more easily (but this won’t

have been the original intention or motivation).

Furthermore intrinsic motivations mean that even ultimately unsuccessful work—

which the BibDesk participant observation found a lot of—has value to the developer,

since one can learn from failure, or simply enjoy the process. This reduces the per-

ceived risk for the developer: one can say ‘hey, I’ll give it a try and even if it doesn’t

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 182

work out I’ll at least have learnt something’. Given also the ability to communicate,

and thereby get opportunistic coaching from an interested and skilled community,

coding to learn appears a very powerful motivator.

Formally this can be incorporated in the model by adding (not multiplying) a new

term to the equation on page 159 on the benefit side reflecting the expected utility

of the experience E (Uexperience). This term is unaffected by the risk of failure (or any

of the multiplicative risks of collaboration), thereby making work more likely to be

preferred.

E (Bchoice) = E (Uexperience) + E (Uoutcome)× E (P (e→ p))× E (P (p→ o)) (7.10)

Successful work done for intrinsic reasons can bridge motivational gaps in the

project and such work can provide layers that make the work of other participants

much easier, supporting a whole new raft of backwards-only tasks.

Reputation

Reputation can function in similar ways, motivating developers to take on tasks

without certainty of completion or immediate payoff in the software. As long as the

project is careful with assigning credit, individuals can increase their reputations by

taking on tasks that are known to be collectively valuable but which are not otherwise

motivating. An example of this might be tasks such as managing infrastructure.

Reputation, as a type of external reward, could even motivate unpleasant work, just

as financial rewards do. Note however that reputation would take time to build, so

is unlikely to be operative in the very early stages of a project.

This relaxation allows projects to proceed through blockages without resorting to

work with direct interpersonal interdependencies, still working only through layered

individual work. Yet reputation seems likely to be important for working in concur-

rent or sequential modes as well, since reputation can be modeled as revealed quality

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 183

and commitment. Since participants can see the public successes of other’s efforts

(and are relatively shielded from their private failures) they may be more willing to

trust others and enter into agreements for concurrent or sequential work.

Helping others

In addition to these important effects, allowing payoffs outside the software itself

also sheds more light on a crucial behavior: that of working to solve other people’s

problems, perhaps out of a sense of generalized obligation to pay-forward the benefits

the project has given you. Above we considered the situation where users could

provide help conceptualizing or noticing tasks which developers then took on as their

own, but if developers are motivated by alternative payoffs this creates the possibility

of acting to fix a bug or add a feature even if the developer himself doesn’t see the

issue or won’t use the feature. The specific alternative motive here is not important:

it could be learning, reputation, generalized reciprocity, or even an enjoyment in

seeing one’s software widely used.

Motivations of this type are important since they allow developers to be motivated

by increasing user numbers. Greater user numbers mean a larger pool of potentially

motivating reports or requests, as well as a larger potential for assistance in character-

izing and thus re-conceptualizing the effort required to achieve the desired outcome.

It is certainly the case that developers do sometimes implement things that they

themselves have argued are useless, and have done so at the request of users. In one

task in Fire (Fire Task 27) a developer noted that he implemented “Invisible (even

though it is pretty stupid)”4.) The converse is perhaps more common, however. The

core developer at present in BibDesk is quite outspoken in refusing requests that

he assess (with the silent support of the rest of the developers) as being beyond

4http://sourceforge.net/project/shownotes.php?release id=127461group id33772#release note

http://sourceforge.net/project/shownotes.php?release_id=127461group_id33772#release_note
http://sourceforge.net/project/shownotes.php?release_id=127461group_id33772#release_note
http://sourceforge.net/project/shownotes.php?release_id=127461group_id33772#release_note

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 184

the scope of the project (such as customizable keys), protecting against code and

preference bloat.

Each of the assumptions relaxed above have had positive effects on the work of the

project, reducing the frequency or impact of the Needed Step dilemma and increasing

the potential for both individual and, to some extent, concurrent or sequential work

with interpersonal dependencies. Yet it is vital to also revisit the assumptions which

eased the task of the developers.

Difficult Integration

In the preceding discussion it is assumed that adding a layer of work to an existing

codebase is a relatively easy process. This is the result of the explicit assumption that

the existing code is well-organized and documented and the developers are excellent

code readers. Furthermore it ignores the effects of more than one developer working

independently on the codebase during any one turn. Such concurrent development

may shift the ground underneath the developer and when they finish their work they

may easily find that the work of others has changed the codebase in ways that render

their layer incompatible. Such situations are common and known as “conflicts” (Fogel,

1999).

Conflicts may be trivial to resolve, or they may be complex. Trivial conflicts

might be caused by something as simple as adding a function and therefore moving

other functions within a file, or renaming functions or variables used elsewhere to

improve the readability of code. Complex conflicts involve incompatible logic between

two contributions and solving them requires delving into the logic of the conflicting

contribution. A concrete example of a complex conflict is a “race condition” where

one component is paused (“blocked”) waiting an anticipated behavior from another,

but the other is also blocked, itself waiting for the behavior of the first component.

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 185

One way in which conflicts can be modeled is to introduce a special period at

the end of each turn which enables developers to inspect their work in the context

of the other work in the period. The contributors add their changes to the codebase

in a random order, but must resolve any conflicts their addition creates. If the

conflicts are trivial then they can make simple changes and have their contribution

added and be the base for the next participant’s integration work. However if the

conflict is complex and cannot be resolved then their development efforts fail for that

turn. However the developer is well placed to use their following turn to perform the

complex integration work, with updated knowledge of the codebase. Of course their

payoff would be reduced through delay and their layer is unavailable to others for an

additional turn.

It is worth noting that the source code repository software used by FLOSS projects

specifically assists in discovering conflicts based on the syntax of the code, and some

projects also use test suites which can assist in discovering semantic conflicts. Fo-

gel (1999) contains an excellent summary in the FLOSS context. The role of this

technology will be further considered in the Discussion.

Thus far we have assumed that all participants start and end their work at the

same time, but in reality work is of different lengths and starts at different times,

which also helps to mitigate the impact of difficult integration. The model can be

altered to allow this by offsetting participants’ turns and either varying their length

(perhaps as a result of varying skills or challenges) or allowing participants to see

the intermediate results of other’s work. Both operate by changing the codebase

that the participant sees when they begin their task. Offsetting and varying lengths

of tasks allows participants to begin their work after a short task by another, which

delays payoff but eliminates conflicts from concurrent work. Since the turns are offset

the delay effect might not be substantial, since the developer might be working in

a different area of the code or might simply not be available for work. Allowing

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 186

participants to see the intermediate results of each other’s work can ease integration

because they can spot potential conflicts early on and alter their techniques to reduce

the chance of complex integration conflicts. Essentially this allows participants to

start their turns during other’s turns, or to act early to reduce the effort required for

resolving conflicts.

It is worth noting that both of these techniques can work without developers

communicating, other than to watch each other’s code changes.

Difficult integration but allowing communication

If acknowledging difficult integration is combined with having developers communi-

cate there are more opportunities for easing its effects, but they come with potential

costs. For example, in the simplest case a developer is simply trying to understand

the completed, unchanging, code on which they are building so that they can assess

the effort and process required to achieve a desired outcome. If they can seek the

advice of the knowledgeable authors, such as the original author, this may be sim-

pler. However this merely pushes the analytical question back a level: why would the

original authors expend energy to answer their questions?

If only instrumental motivations are allowed, it might be possible that the original

developer is motivated to ‘defend’ their code against the possible introduction of bugs

during integration. Similarly the knowledgeable developer may also be motivated

by the contribution that the other developer is trying to make, which frames this

situation as a simple agreement (to attempt to answer questions, should there be

any). Finally, the knowledgeable developer might be aware of the effect described on

page 173, whereby changes in the codebase have the potential to make tasks they

wish to accomplish more possible.

However if one allows alternative motivations it is much simpler to see other

developers “helping out”, since they might be motivated by reputation (to show their

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 187

code to be well written) or learning (to see problems others have with their code

and thereby write better code, as Lakhani and von Hippel (2003) found) or simply

motivated by a desire for the project to succeed, even if they don’t care for the

outcome themselves.

If one allows communication and allows either the offsetting of tasks of vari-

ous lengths or access to intermediate code then communication could also assist in

heading off potentially complex conflicts, rather than resolving them later. However

communication like this is not without cost; it is additional work over and above the

development effort and the effect on payoffs is uncertain, since a developer would

have to act without being certain that a complex conflict will emerge. They would

also have to act without knowing whether their action will necessarily help the other

developer, or whether it will simply produce more time-consuming questions.

In reality both watching each other’s code and talking about one’s own code can be

quite difficult, especially because the course of development is often not well planned

and while the final product of development might be comprehensible and logical, that

does not imply that the work was done in simple pre-planned steps. In some cases

access to intermediate work could cause premature adjustment and thereby increase

integration effort, and thus the possibility of failure or delay. Similarly in some

cases communicating in words about code can be quite hard, especially if the code

is unfamiliar to the developers. Such communication could easily require substantial

effort and itself become a source of misunderstandings.

7.6 Aligning work with motivations

Thus far the work in this chapter has advanced a rational choice model which goes

some way to explaining both the dominance of individual work (since collaboration is

risky) and the way in which deferral works. The model is, however, relatively static.

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 188

The remainder of the chapter sketches how the motivational findings of the BibDesk

case study and the literature reviewed in the previous chapter permit the injection

of dynamism into the model.

The model above provides some important and surprising results. However it

understates some important interactions between the organization of work and the

motivations of participants. The basic model assumes that a participant’s motivations

are unaffected by their past experience of work in the project, since they are solely

driven by the outcomes of their work. Motivation is therefore completely exogenous,

generated only by the use of the software. Yet it is clear from the experience in

BibDesk and the theories of motivation discussed in Chapter 6 that motivation is

likely to be affected by the experience of work.

This can be modeled by introducing an endogenous effect on motivations and

allowing this to shift agents’ expectation of the probability of success as well as the

actual probability of success. This is justified because successful completion of tasks

provide a confidence boost while failure undermines confidence. Confidence is im-

portant when one considers that participants are making their decisions based on

their expectations. Their expectations about their own self-efficacy, their confidence,

therefore affect whether or not they will attempt work at all. If they do begin work

and encounter difficulties, confidence may assist them in pushing forward to complete

the work or even prompt more effort to seek help in the project’s public forums. Fur-

thermore efforts to engage other members of the community may increase confidence,

while unsuccessful efforts may decrease confidence.

The size of the confidence effects, as with all the parameters in the model, are

difficult to estimate, but are related to the size of the effort invested. Thus attempting

and failing will have larger effects if the attempt involved a great deal of effort.

This implies that failing at a development task will have a larger effect than if one’s

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 189

questions are not answered, simply because development tasks require more effort

than composing an email.

It also offers the potential to acknowledge attribution effects, whereby failure

that is perceived as the result of others is considered more demotivating than one’s

own failure, as suggested by Kiggundu (1981). A similar thing could be achieved if

participants are allowed to learn from the work done during their own failures, but

not through the failures of others. This has the effect of increasing the risks of inter-

personal dependency, making individual work more attractive. However one must

also acknowledge a potentially reinforcing payoff from the experience of successful Co

work, prompting more Co work in the future.

Adding endogenous motivation to the model gives it dynamic feedback effects,

whereby successful completion of tasks makes future effort more likely and failure

makes future effort less likely. Projects with participants that meet their goals will

move forward more quickly and therefore have a codebase that supports more desired

outcomes. Such a codebase will also change more frequently and is therefore more

likely to increase the possibility that deferral will allow agents to re-conceptualize their

seemingly hard problem into an easier one that can be undertaken as individual, less

risky, work. Conversely a project where the developers are not achieving their goals

suffers from the reverse effect, making deferral less attractive and, over time, reducing

the pool of development effort.

Over time this makes projects, through their participants, more likely to stick

to things that work, and less likely to undertake more risky actions, modeling the

evolution of preferences regarding interdependency observed by Wageman (1995).

This is true whether one allows individual participants to learn, or models preferences

for types of work as an unchanging individual characteristic, whereby those with

preferences that are not rewarded simply cease participating in the project. Of course

empirical reality argues for a combination of these factors.

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 190

Recruitment effects

Little has been said about how new developers come to be interested in the project;

participants were modeled as a fixed pool attached to projects. Yet this is far from

empirical reality, where individuals are free to pick and choose the projects they

pay attention to (if any at all). This section discusses two elements related to this:

competition between projects and recruitment from a userbase. Both these aspects

engender positive feedback effects, but, as is normal in dynamic systems, their success

also brings potentially limiting risks.

Projects do not exist on their own, especially in popular areas. The stories of

competing FLOSS projects are legion: from Perl/Python/Ruby to emacs vs vi. Sim-

ilar projects can be seen as competing venues for developer’s work. If work is more

likely to be successful in a different project, and migration is a possibility, then de-

velopers are likely to migrate to such projects. Of course migration has its own costs,

since it implies the need to ‘get up to speed’ with other codebases or social practices.

Nonetheless if work within a project is failing, or slow development is undermining

the ability for deferral to restructure problems, then migration is a possibility and

projects which are good environments for work will move ahead, increasing the band-

wagon effects discussed above. Fire eventually closed entirely when the remaining two

developers decided that their efforts would be more productive in the faster moving

AMSN project.5

A similar effect can be obtained if one acknowledges use of the software as a

source of development motivations and allows a separate pool of participants who

use the software but do not develop for the project. As the usefulness of the project’s

output increases more users will be attracted. As discussed above it is possible that

user numbers might motivate some developers, but these effects are quite possibly

5http://sourceforge.net/mailarchive/message.php?msg name=E6234655-FCC6-46E0-8B81-

DF805F3EA861%40tamu.edu

http://sourceforge.net/mailarchive/message.php?msg_name=E6234655-FCC6-46E0-8B81-DF805F3EA861%40tamu.edu
http://sourceforge.net/mailarchive/message.php?msg_name=E6234655-FCC6-46E0-8B81-DF805F3EA861%40tamu.edu

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 191

Figure 7.12: A figure showing illustrative ratios between users, potential contributors
(users who can code), those that actually do contribute at any time and
those who contribute frequently. The outer dotted line indicates a scale
change, clearly the universe of all people is massive compared to most
potential users, and actual users.

Potential Users

Users

Users who
can program

All-time
Contributors

Active
Contributors

All People

counter-balanced by the emergence of a user-support load. This argument is similar

to the model of progressive involvement, based on an evolution of motivations, made

for Wikipedia by Crowston and Fagnot (2008).

If one allows users to be recruited as developers, even at very small rates, then the

effects are similar to attracting new developers from other projects. Provided they

engage in work that is successful the application will increase in utility, the codebase

will offer more opportunities for layered enhancement and change to allow deferral to

operate effectively. It is likely that such a process would see user numbers growing

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 192

exponentially (given a large enough potential audience), with contributor numbers

growing at a slower, linear, rate.

Both of these recruitment processes seem likely to lead to bandwagon effects, but

unrestrained growth is unlikely, since growth also has well-known costs. Rapid growth

in the codebase will tend to undermine the ability of individual developers to maintain

their understanding of it, reducing their ability to quickly and correctly estimate the

work needed to undertake a new task. Furthermore rapid changes tend to receive less

testing and therefore have more bugs, reducing the usefulness of the software. This

is only increased by the “feature bloat” and “preference bloat” which rapid parallel

development can lead to. Maintaining an understandable and reliable codebase under

these circumstances requires continuing maintenance work, such as re-factoring, which

does not directly increase the usefulness of the software and is therefore not motivating

to many participants. Further, such work requires a comprehensive understanding of

the growing codebase and the political skills to hold eager developers in check, while

not discouraging them from all participation. In this way the bandwagon effects of

allowing endogenous motivations will, under some circumstances, be restrained.

This analysis provides some explanation of the bandwagon effects seen in FLOSS

projects, whereby the initially successful accelerate while the initially unsuccessful

do not and eventually die (e.g. Conklin, 2004). It also offers scope for projects to

be initially successful but to reverse course (e.g. Schweik and English, 2007). This

is true in a number of ways. For example a project might face competition which

provides a more productive environment for developers or, emboldened by initial

success, the project might increase its interpersonal dependencies. While this may

increase the project’s speed in the short term, if anything undermines the availability

of partners (such as the natural expansion and contraction of available free time) then

collaboration failures, which are especially penalizing in terms of motivation, could

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 193

quickly undermine the initially successful project. This is discussed further in the

Discussion (Chapter 8).

7.7 Limitations

Among the limitations of this model is that the model of software development is

relatively simplistic. For example it focuses only on the writing of software, not

on its design, testing and periodic re-factoring. This is because these aspects are

de-emphasized in FLOSS development, but their absence does question the general

applicability of the model.

Further the empirical work grounding the model has been focused on end-user

oriented software, where a growth in immediately useable features is most clear. The

model may not adequately extend to the development of intentionally infrastruc-

tural software, where the work is less likely to be immediately useful to participants.

Certainly in commercial software development there is an understanding that prepa-

ration work sometimes pays off well down the track, and it is not too hard to imagine

participants making similar trade-offs in areas such as library or operating system

development.

7.8 Conclusions

This model reveals a surprising affordance of software development which allows

projects to overcome a restatement of the collaboration problem by converting it

into a set of sequential technology-mediated backwards-only dependencies. Such in-

dividual work has the important characteristic that it is always in-synch with the

empirically dominant participant motivations and the capability of available commu-

nication technologies. The effectiveness of deferral also allows projects an alternative

to potentially risky and complex inter-personal dependencies. In the Introduction

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 194

(Part I) it was stated that this dissertation is about the “something else” that is

invoked in discussions of FLOSS, something novel. This is a large part of that some-

thing.

Progress through deferral of complex work is vital and interesting but also limited.

It seems destined to be very slow and often fail completely. Relaxing the assumptions

of the model brings the picture closer to empirical reality and gives projects more

options to overcome blockages in their development, especially once learning is an al-

lowed motivation. The characteristics of the individual decision making environment

enable the project, at an organizational level of analysis, to move ahead more quickly,

further improving the environment for productive deferral. Nonetheless growth is not

unrestrained, especially if there is little motivation to conduct regular maintenance

on the codebase.

This chapter has presented a model which is grounded in and explains the core

findings of the empirical studies in this dissertation: the dominance of individual work

and the use of deferral as a production strategy. Together the empirical findings and

the model provide an answer to RQ1 and RQ2. Furthermore because this type of work

can only occur under a certain set of conditions it provides a way to understand the

circumstances to which the organizational innovations of FLOSS development might

successfully be adapted. The next chapter considers how these conditions relate to

other work environments, and therefore answers RQ3.

Part III

Conclusions

195

Chapter 8

Discussion

This chapter draws together answers to the three research questions of the disser-

tation and reviews their limitations. It particularly focuses on the question of the

adaptability of FLOSS organizing, showing how the model developed in the previ-

ous chapter provides a way to analyze where else this type of organization might

be successful. This is demonstrated by considering three non-FLOSS organizational

contexts: Wikipedia, Open Hardware and political advocacy.

As stated in the Introduction, the three research questions of this dissertation are:

1. How is successful FLOSS production organized?

2. How does this organization interact with the motivations of developers?

3. What are the implications for the adaptation of the FLOSS model of organiza-

tion in other environments?

This chapter will examine each in turn, summarizing the answers to RQ1 and

RQ2 already presented and providing an extended discussion of how these answers

provide a framework to answer RQ3.

196

CHAPTER 8. DISCUSSION 197

8.1 RQ1: How is successful FLOSS production

organized?

This dissertation makes the argument that successful FLOSS production is organized

primarily as layered individual work. Such work is chosen and conducted by an

individual participant and conducted over short periods of time. It is not conducted

alone, but rather “in company” in the sense that it is visible to others in the project

and they sometimes assist in unplanned ways. This visibility is closely associated with

the technologies that FLOSS projects use, particularly the integrative technology

of CVS and the manner in which email can support both asynchronous and near-

synchronous communication. It allows others to be involved as opportunities presents

themselves, without creating dependencies which might delay the central participant.

Not all work, however, is individual. A small amount of tasks are conducted in

a way that requires participants to trust each other and to reciprocally alter their

own activities to match those of others. This dissertation has argued that this type

of work is rare because it is risky and particularly so in a volunteer environment.

Furthermore FLOSS projects are sometimes able to advance simply by deferring

complex work. This is efficacious because an ever changing codebase provides op-

portunities to re-conceptualize the work needed to implement a feature or fix a bug,

sometimes making a seemingly complex task much easier. Libraries and other code

produced outside the project can be particularly helpful here.

These findings are supported by evidence from participant observation and the

pilot archival study of BibDesk. They were replicated and focused in an archival

study of two similar projects: Fire and Gaim. The model developed in Chapter 7

clearly predicts the dominance of individual work found in the two empirical studies.

Of course there are limitations to this result. Firstly the result is limited to

projects which are within the scope of this dissertation, as outlined in the Introduc-

CHAPTER 8. DISCUSSION 198

tion. This means that there is little reason to expect this result to hold in a project

simply because that project has released software under an open source license. If

the project is, for example, like MySQL in that everyone who works on it is under

contract to and paid by a single organization one ought not expect the results to hold.

The result is also limited, even within its scope, by only having studied in detail

individual release periods of projects. In BibDesk this was not so problematic because

the pilot study confirmed understandings built over four years in the field. In Fire

and Gaim, however, this is not the case, The periods studied may have been special

in some way. For example not all of the major contributors to the projects were

active during these periods. There is no reason to see these periods as special, but

the result would be stronger if other periods also showed similar results.

Finally the result is limited, as discussed in detail on page 132, because the identi-

fication of Tasks and their classification is the result of qualitative coding undertaken

by a single researcher without the benefit of reliability testing that coding by multiple

coders would provide. This is mitigated somewhat by the deep involvement of the

single coder, who needed to draw on his experience both in FLOSS projects and in

software programming to create the Tasks and assign the codes.

There are (at least) two reasonable objections to the reasoning for this finding,

both linked to the question of a dependency structure being encoded in the task.

The first objection is simply to say that the reason that the work was conducted

individually was because the tasks themselves had no interdependence, they existed

in a parallel fashion without affecting each other. This allows one to argue that this

is the nature of the applications studied and therefore the task structure assumed

this shape. The argument here is essentially over the direction of the causation. This

dissertation contends that a combination of the motivational context and communi-

cations infrastructure interacts with participant’s experience to promote undertaking

work in an individual way. It is a structurational, emergent argument. Unlike many

CHAPTER 8. DISCUSSION 199

situations studied in traditional coordination literature, such as restaurants and even

commercial software development, FLOSS participants are relatively free to choose

their level of interdependency due to the flexibility of the software and the lack of

organizational oversight, investment and control, and they choose to pursue the work

with minimal interdependence in the conduct of the work (the artifact is, of course,

interdependent). Thus this dissertation sides with those studies of coordination and

interdependency, such as (Wageman and Gordon, 2005; Faraj and Xiao, 2006), which

argue for an emergent view of interdependency in work.

The second similar objection is that individual work may indeed have been pre-

ferred for motivational and infrastructure reasons, but that this is a result of achieving

modularity in the software, as discussed in Chapter 4. Recall that the basic argu-

ment is that effective parallel collaboration is achieved through pre-planned design

such that sections of the code are separated from each other and communicate only

through well defined interfaces (Baldwin and Clark, 2001; Langlois, 2002; von Hip-

pel, 1990; Parnas et al., 1981). Yet, as has frequently been observed amongst those

promoting agile software techniques, this requires understanding the problem that

the application will solve in advance (Beck et al., 2001; Warstaa and Abrahamsson,

2003). In sum the argument, and Conway’s law, is about designed software. In

FLOSS development the assumption that one is designing software to a well specified

set of requirements is clearly not true; rather the application develops as users (or

clients) come to understand their problems better through situated interaction with

rounds of prototypes.

A formal analysis of the modularity characteristics of the software studied in this

dissertation was not undertaken, but there was certainly no evidence of strong norms

of code ownership or documentation of interfaces, indeed there was very little planning

of any kind. Further it was clear that many tasks, by different actors, touched the

same core files, but without evidence of the structure at a functional level this is

CHAPTER 8. DISCUSSION 200

only indicative. Certainly, the applications were all originally developed by a single

individual, which would tend to promote non-modular designs (Conway, 1968), only

later moving—in an unplanned way—into group development.

In short, this dissertation argues that the work was incremental at a feature level,

but that this is distinct from structural modularity in the codebase. Incremental

features, driven by dynamic individual motivations, and not modularity as it is tra-

ditionally conceived, explains the dominance of individual work. When everything

the participants in a project do is subject to revision, re-conceptualization and ex-

tension, it seems “always premature” to solidify a design that was appropriate for a

particular set of problems for a particular set of participants, at a particular time.

Nonetheless the relationship between modularity in the codebase and incrementalism

in development merits further research.

8.2 RQ2: How does this organization interact

with the motivations of developers?

This dissertation provides two types of answers to this research question. The first is

the experiential, introspective examination of motivation as a participant in BibDesk.

The author experienced motivation primarily from the application itself and secon-

darily from learning. The study identified day-to-day use as crucial to the motivation

process: annoyances while otherwise working combined with the easy availability of

the source code lead to quick investigations of possible fixes. Furthermore the process

of a fix, particularly successful ones, often threw up other tasks at exactly the time

when confidence was high. Conversely any interruption to this process was demotivat-

ing, particularly when work was blocked by circumstances outside the participant’s

control.

CHAPTER 8. DISCUSSION 201

The second type of answer returned to the literature and examined theories of

motivation, particularly expectancy-valence theories and theories that brought to-

gether motivation and production, such as the theory of job design. These match the

experience in BibDesk suggesting that tasks which are achievable, complete (in the

sense of task identity), self-chosen, executed with autonomy are more motivating and

therefore more common. Working ‘in company’ can create a sense of responsibility

to others, but failures outside individual’s control are demotivating.

These two answers were combined in the explanatory model which argued that

work can proceed surprisingly well just through these relatively individual, short self-

chosen tasks. It was argued that this is true even in circumstances that would tradi-

tionally have required reciprocal collaboration because deferral in an active project

allows participants to re-conceptualize their task as individual work at a later date.

Furthermore it was argued that these individual successes increase confidence,

encouraging participants to take on more tasks. Conversely, it was argued that any

failures of others in collaboration are especially demotivating since they do not even

result in learning from failure and are outside the control of individuals.

Recruitment was addressed only through an extension to the model: a growing

project is more useful, attracting more users, some small portion of whom have the

skills needed to be developers. Their day to day use of the application will generate

annoyances or desires and, if the source is available and understandable, some small

portion of these will be recruited. This seems likely to produce bandwagon effects

because more development brings more layers and features as well as ensuring that

the project is active enough for deferral to be a productive strategy.

One implication of these answers for FLOSS success is that layered individual work

may prove to be more sustainable than organization based on Co work, particularly if

it is a default “fall back” for the participants. As discussed in Chapter 5 in the periods

studied Fire and Gaim were comparably successful. In early 2004, though, their paths

CHAPTER 8. DISCUSSION 202

diverged, with Gaim moving from strength to strength and Fire gradually becoming

an inactive project, effectively ending in early 2006. While a complete study of the

failure of Fire would require further in-depth analysis, when the developers announced

“Fire’s End” they pointed primarily to a lack of developers able and motivated to

maintain and extend the project. The two remaining developers moved together to

a similar project called AMSN.1

In this context it is interesting, although far from conclusive, that Fire also dis-

played more Co work, more distinct actors per task and generally longer Tasks than

Gaim. In the period studied this did not seem to be a problem for Fire; there was

no evidence of failures in Co work. However if a project establishes a norm of Co

work early in its life but then the developers find that they have less time available to

the project down the track—for whatever reason—then the project may have trouble

adjusting back to individual work and therefore experience continuing failures of Co

working. Figure 8.1 shows a highly stylized depiction of such an effect.

If the theorizing about motivation is correct then while successful Co work may

drive a project in its initial phases but any failures of Co work (for whatever reason)

would quickly drag the project down, since failed reliance on others is especially de-

motivating. Conversely a project that proceeded only through layered individual work

might progress more slowly, but ultimately prove to be more robust and successful

in the long term. The norms of layered individual work might persist even when

the participants, increasingly comfortable with each other, chose to work together for

some tasks. If that collaboration broke down the project could fall back on successes

in layered individual work to carry it through. Note that the patterns of Fire and

Gaim do not exactly match this highly stylized simplified model; it is by no means

the whole story.

1http://sourceforge.net/mailarchive/message.php?msg name=E6234655-FCC6-46E0-8B81-

DF805F3EA861%40tamu.edu

http://sourceforge.net/mailarchive/message.php?msg_name=E6234655-FCC6-46E0-8B81-DF805F3EA861%40tamu.edu
http://sourceforge.net/mailarchive/message.php?msg_name=E6234655-FCC6-46E0-8B81-DF805F3EA861%40tamu.edu

CHAPTER 8. DISCUSSION 203

Figure 8.1: A highly stylized comparison between a project based on Co work (solid
line) and one based on layered individual work (dashed line). The initial
success of the Co work heavy project is undermined by compounding Co
work failures and the slower but more sustainable layered individual work
proves more successful in the long run.

Success

Time

Co-work drives
rapid growth

Decline in
developer
availability

causes failures

Co-work failure
undermines

motivation and
drives project down Project based only

on layered
individual work is
slow, but steady

8.3 RQ3: Implications for adaptation

Part of the excitement about FLOSS is that it succeeds in surprising circumstances

and many hope to adapt its socio-technical infrastructure in different environments

and for different problems. Understanding the extent to which this is possible requires

a way to grasp which features of context and process are similar enough between

contexts to support the model of organizing advanced in Chapter 7. Many of these

features were introduced in that chapter but this section draws them together and

reiterates their roles. This enables an examination of three alternative contexts,

pointing out the important similarities and differences and thereby demonstrating

the manner in which this dissertation answers RQ3.

The features of context that are crucial to the operation of the model in Chapter 7

can be organized according to the IPO framework introduced in Chapter 2, as shown

in Table 8.1.

CHAPTER 8. DISCUSSION 204

Table 8.1: Conditions for the FLOSS model of organizing

Input
1 Ultra-low upfront investment
2 Individually motivating work
3 Past work is available, non-revokable and non-exhaustable

Output
5 Instantiation is ultra-low cost and near-instant
6 Distribution is ultra-low cost and near-instant

Process
7 Task can be approached in layers
8 Task is rewindable
9 Work and communications are observable
10 Communications support temporal mode switching

Ultra-low upfront investment

Upfront investment, such as raising capital, sets a time-clock running and creates a

hierarchy of control. The over-riding principle of organization in this circumstance

is efficiency: the time-cost of money ensures that the gathered resources must be

used to accomplish tasks in the minimum time available, creating an external push

for deadlines and deliverables. This undermines the ability of the project to defer

difficult work, forcing it to seek to overcome “Needed Step” situations through pre-

planning and inter-personal dependency. This immediately suggests that deferral will

be difficult to employ productively in a commercial software development context.

Upfront investment of capital also creates a hierarchy of control. The originator

of the capital requires a return on investment, either through money (for profit)

or through impact (non-profit). This creates a situation of collective responsibility

amongst the participants which is quite apart from their personal motivations for

participation. This responsibility is met by yielding control, at least at a broad

strategic level, to the funder. Even at a tactical day-to-day level the delegation of

control to managers is a central feature of organization under such circumstances.

CHAPTER 8. DISCUSSION 205

Individually motivating work

The absence of upfront investment also removes a standard motivating mechanism:

the exchange of money for time and effort. Without this the project is constrained to

organization based on individual motivations. As discussed in Chapter 7 these can be

of many types but they must be fundamentally individual, as opposed to collective, at

least initially. Of course they can be both extrinsic (e.g. for the software) or intrinsic

(e.g. for learning or fun).

In environments lacking both individual motivations one would need to rely on

collective motivations, such as altruism, ideology or reciprocation, which are indeed

sometimes found (see Chapter 2). However, each of these is fundamentally linked

to effect. If the project is already succeeding it is possible that such motivations

might provide additional resources, but collective motivations seem unlikely to start

or sustain the organizing reported in this dissertation on their own. Collective moti-

vations seem likely to be additive, layering on top of already effective projects driven

by individual motivations.

Past work is available, non-revokable and non-exhaustible

A fundamental requirement of the model of organizing advanced in this dissertation

is that new work builds on old work. The “backwards-only” dependency, shown as

gray-on-gray in the diagrams of Chapter 7, relies on three crucial features of past

work.

The first is that past work is available in a form that makes it understandable and

permits further building. In FLOSS projects this is usually accomplished by providing

anonymous read access to the project’s source code repository, but historically has

also been accomplished by providing regular tarballs or patch sets. Very simply, if

the work is not available there can be no organization of the type described in this

dissertation.

CHAPTER 8. DISCUSSION 206

Similarly past work must be non-revokable. This is fundamental to a “backwards-

only” reliability. If the availability of the work can be revoked then any participant is

relying on all past contributors to continue to make their contribution available. This

would mean that all work has a future dependency on non-revocation by contributors,

turning all work into a sequential dependency where the second step is non-revocation,

making all payoffs contingent. Other massive voluntary projects have suffered from

revocation problems. For example the CDDB project accepted public contributions

of music album listings in exchange for free access to the combined database. The

controller of the database revoked the free access, starting a company called Gracenote

which charged companies like Apple for access. Needless to say the public contribution

component of the project stopped immediately.

Interestingly open source licenses, and the ten point open source definition2, say

nothing specific about non-revocation. This is because all open source licenses are

already copyright licenses, and not contracts, and even a normal closed source li-

cense has the attribute of non-revocability. Once the source-code is released under

a particular license it can be re-released under a new license by the owner, but the

owner cannot rescind the rights already granted by the earlier release. Contributions

to FLOSS projects “keep on giving”, no matter how many people build on or use

them. Contributors do not have to continue to supply the resource, as they would if

they were contributing bandwidth, for example. This ensures that non-revocability

is passive, not an active decision.

Non-exhaustibility is vital to the growth and continued success of this model of

collaboration and sets up a fundamental condition: for this model of organizing to

work contributions must be non-exhaustible. This is a characteristic of an informa-

tionalized product; it can be reproduced at near zero cost and its reproduction does

not affect future reproductions—it is infinitely sharable.

2http://opensource.org/docs/osd

http://opensource.org/docs/osd
http://opensource.org/docs/osd

CHAPTER 8. DISCUSSION 207

Instantiation Costs

The source code of a project on its own is of very little use to those seeking to use

the application for its intended effects. This is true whether the user is a developer

or simply a passive downloader. It is only when the source code is instantiated as an

application that the payoff utility of the contributions can be realized.

In the case of software this instantiation is a matter of compiling the source code

into a binary. A binary is a set of machine language instructions able to be executed

on a compatible computer. Thus the payoff for software development requires both a

compiler and a compatible computer. Since compilers are also available as FLOSS and

computers are plentiful and widespread, instantiation has an ultra-low marginal cost:

simply the effort of a single individual to compile the software and a double-click by

the user to start the application. Similarly instantiation is ultra-quick: compilation

takes seconds or minutes and executing the software is similarly quick. This is the

foundation of “release early and release often” (a well known exhortation in FLOSS

circles).

Stepping back from software it is easy to see that not all products have these

characteristics. For example a house, a submarine or an airplane all have informa-

tionalized representations in their blueprints and production manuals. Yet they are

expensive and relatively slow to instantiate, requiring man-years of work and using

materials which are exhaustible. No one would live in a house “released-early” and,

while producers might like to “release often”, the costs of instantiation limit their

ability to do so.

Distribution Costs

It is also vital that the product be ultra-cheap and ultra-fast to distribute. The

common nomenclature for distribution is revealing: FLOSS software is “released”,

while commercial software is “shipped”. Releasing is a near-zero effort and cost

CHAPTER 8. DISCUSSION 208

process; one simply lets go. Shipping is a slow and costly process, replete with

dependencies.

Consider the situation that prevailed in the software industry before the internet.

Software was equally cheap and fast to instantiate, but it had to be distributed on

physical media. This process is expensive and takes time. CDs must be stamped,

packaged and transported to customers. Once the software is with a customer any

errors must be patched by a new release which can only be done by physical re-

production and transportation. These costs create natural deadlines, reducing the

possibility of development through deferral and requiring upfront investment that

generates a push to pack features into each new release in order to extract payoff in

increased sales.

By contrast internet distribution leverages the spare capacity of existing end-user

and producer investments in bandwidth and availability. Very few people obtain their

internet connection for the purpose of obtaining FLOSS; it is the “chunky” nature

of the distribution pipelines that creates the excess resources that ensure that the

marginal cost of distributing, or obtaining, software is closer to releasing a helium

balloon rather than shipping a CD.

Again not all products are cheap to distribute; it is an attribute of fully informa-

tionalized products. And sometimes even informationalized products have costs of

distribution. For example a documentary film can contain copyrighted and restricted

images in the background of a shot (Hughes et al., 2008; Lessig, 2002). As soon as

the film-maker wishes to distribute this to customers they face a choice: either they

make their product liable to legal action (and therefore revocable) or they must clear

the images for use, definitely expending search costs and in all likelihood being re-

quired to pay a royalty for each item distributed. This gives insight into why the first

item of the open source definition requires that all open source licenses must rule out

royalties.

CHAPTER 8. DISCUSSION 209

Together the attributes of ultra-low cost, ultra-quick instantiation and distribution

work together with the availability, non-revocability and non-exhaustibility of past

work to provide a crucial platform for the model of organizing described in this

dissertation. They are closely linked to informationalized products, enhanced by the

open source definition. They form a set of criteria for the product which is useful for

understanding the applicability and trade-offs inherent in trying to apply the FLOSS

model of organization in other domains.

Layerable

For individual layered work to be possible the production environment must be sup-

portive. The product must be able to be built through addition and the layers must

be relatively easy to integrate and frequently have independent payoffs for very small

additions (“stackable incentives” or perhaps “incremental incentives”).

Some work is not like this. For example long-form communicative work, such as

in reports or novels, requires attention effort from the receiver and therefore it is

vital to deliver them as parsimoniously as possible. Such productions are also most

valuable when they are consistent and logical throughout. One cannot fix a sculpture

by changing a preference item, one should not ask the recipient of a political pamphlet

to spend three days reading it.

The requirement that layers frequently have independent and incremental payoffs

is also significant. An airplane certainly can be built in layers: first the fuselage, then

the engines, then the wings. But until it is complete none of these steps provide any

utility payoff. Similarly releasing a political document or a novel too early may ruin

its effect and reputation and it may easily be too late for corrections.

It should be noted that FLOSS is not immune from these effects, in fact not

acknowledging them might be a cause of project failure. For example while software is

generally layerable if its initial release does not provide sufficient utility for regular use,

CHAPTER 8. DISCUSSION 210

the positive feedback of annoyance recruitment cannot occur. Of course the product

should not be perfect, either. Eric Raymond captures this idea in his advice that a

new project release only when its software provides “plausible promise” (Raymond,

1998), which others have characterized as best done with a “Cathedral before the

Bazaar” (Senyard and Michlmayr, 2004). If a project is too ambitious early on and

attempts to solve too many problems for its first release, it may exhaust the initial

goodwill of its participants and never achieve the sustainability of a culture of layered

individual work, as seems to have happened with the Chandler project (Rosenberg,

2007).

The second aspect of layerable work is that the layers must be relatively easy to

integrate. If they are not, then achieving a payoff through adding a layer is harder

because there are actually two tasks, producing the layer and adding it to the project.

In Chapter 7 this ease was initially assumed but then relaxed to discuss how source

control repositories like CVS make this task easier for FLOSS development by making

conflicts more obvious and their resolution more individual.

This point is best understood by considering integration work as just another type

of task that ought to have the same characteristics as regular tasks. That is to say it

should be relatively clear what is required for the integration and it should be able

to be done in an individual fashion, perhaps assisted by opportunistic, not planned,

supporting work.

Again not all work has this characteristic and not even all work under an open

source license has this characteristic. For example, Apple Computer, working in

commercial secrecy, built the Safari web browser on top of the open source web

rendering library called khtml. The library was under the LGPL license so Apple was

within their legal rights to work in secret and only had to release their modifications

once Safari was finished and distributed. When Apple released Safari they did indeed

release their modifications. Yet the khtml project was quite displeased. This was

CHAPTER 8. DISCUSSION 211

because the modifications were too large and had branched from khtml too long ago

for them to be easily integrated. As one of the khtml authors wrote:

Do you have any idea how hard it is to be merging between two totally

different trees when one of them doesn’t have any history? That’s the

situation KDE is in. We created the khtml-cvs list for Apple, they got

CVS accounts for KDE CVS. What did we get? We get periodical code

bombs in the form of them releasing WebCore. Many of us wanted to even

sign NDA’s [sic] with Apple to at least get access to the history of their

internal vcs and be able to be merging the changes incrementally, the way

they can right now. Nothing came out of it.3

Such “code bombs” are an indication of the importance of small layers as con-

tributions; they maintain the understandability of the code and are far more easily

integrated.

Rewindable

This previous quotation also points to another important characteristic of work suit-

able for successfully adapting the model of FLOSS organizing advanced in this dis-

sertation. The more rewindable the work, the better. Rewindability has two effects.

First it increases the understandability of the codebase because one can see the dy-

namics of the code, rather than just a static picture. Secondly, it provides a route

for recovering from failures which reduces the impact of conflicts between unplanned

individual contributions.

This is a socio-technical characteristic of work. It is supported, but not guaranteed

by the “sequence of patches” view of work facilitated by CVS and improved by later

source code control systems. Developers speak of “atomic commits” which has both a

technical and a social meaning. Its consensus technical meaning is simply that“a set

3http://www.kdedevelopers.org/node/1001

http://en.wikipedia.org/wiki/Atomic_commit
http://en.wikipedia.org/wiki/Atomic_commit
http://www.kdedevelopers.org/node/1001
http://en.wikipedia.org/wiki/Atomic_commit

CHAPTER 8. DISCUSSION 212

of distinct changes is applied as a single operation”4. In source code the set of changes

is across different files, but these changes work together to produce a single impact

on the runtime application. CVS actually is quite poor at this (it manages revisions

at a file level) and it was a specific reason for the development of its replacement,

Subversion (which advances the revision count for all files in the module if even a

single file is changed).

However atomic commits are also a social practice, as demonstrated by the fol-

lowing quotation from a FLOSS developer’s blog,

One thing that I try very hard to be diligent about is the ‘atomic commit’.

That is to say, when you commit, you’re committing exactly one change.

It might be across a bunch of files, but it’s one change. The reason is

that if you later realize it was a bad choice for whatever reason, you need

only do a reverse merge (merge -rN:N-1) to undo it. If you don’t have an

atomic commit, and you only want to undo part of what you committed,

then you’re stuck with doing that merge, but then undoing part of the

merge, which gets really dicey if you’ve got some mods in a file that you

want, and some mods that you don’t. Ick.5

While the technical system can enforce a syntactical atomicity, only intentional

practice can ensure semantic atomicity and thus real rewindability.

Not all work has this characteristic. As with questions about interdependence

this is sometimes a fundamental structural characteristic of work but probably more

often a question of the socio-technical production practices and therefore amenable to

re-design, usually through increased informationalization. For example consider two

people working on a marble sculpture. They have to adjust to each other’s work; if

one makes a change—lops off the head, say—the other cannot rewind and begin from

before that action. Even the two working together cannot accomplish that, short of

4http://en.wikipedia.org/wiki/Atomic commit
5http://barneyb.com/barneyblog/2006/01/27/atomic-commits-to-version-control/

http://en.wikipedia.org/wiki/Atomic_commit
http://en.wikipedia.org/wiki/Atomic_commit
http://en.wikipedia.org/wiki/Atomic_commit
http://barneyb.com/barneyblog/2006/01/27/atomic-commits-to-version-control/

CHAPTER 8. DISCUSSION 213

some system of nano-scale engineering to rebuild the marble. Much service work has

this characteristic, from hair cuts to financial advice: once it is done, it stays done.

Conversely some work can be re-designed to be more rewindable, usually by keep-

ing a closer audit trail and informationalizing the work. Scientific workflows, such

as Taverna, offer this potential to scientists (Howison et al., 2008). Consider want-

ing to change a graphic in a paper during a revision for a journal. If the graphic is

the result of a rewindable and re-playable workflow that holds all the working from

data, analysis and graphing, then the researcher has a much easier task, particularly

compared to having had a student produce the graphic manually on their personal

laptop and then graduate, taking everything with them.

Rewindability reduces the need to plan well in advance. Rather than ‘measure

twice, cut once’ with rewindable work one can cut at will when the motivation strikes,

and measure later to recover if the work was problematic.

Features of communications infrastructure

The model presented in Chapter 7 suggests that individual work is opportunisti-

cally enhanced by participation of others, especially in roles other than the core code

producer for a software layer. The key to this type of assistance is that it is oppor-

tunistic, which is to say that it is unplanned for and not relied on. It is “nice if you

can get it” but does not create a risky dependency. This only works if others can see

public records of the developer’s actions, both programming and discussion. Such

real-time records signal that someone is currently paying attention to the project and

is therefore available for an opportunistic interaction. This type of transparency and

observability is part of what Kellogg et al. (2006) call “trading zones”.

Some forms of communication do not meet this criteria, such as daily digests

or fully moderated venues (moderation introduces delay). Other venues are closed

in nature, either as a policy decision (closed membership) or as a practical matter

CHAPTER 8. DISCUSSION 214

(because potential contributors don’t have access to the medium of communication,

as with ham radio) or because the medium is one-to-one as opposed to broadcast

(like the telephone or private email). Still others do not have a push attribute, such

as forums, and rely on an out of band notification system, such as an RSS feed.

An additional affordance of communications able to support opportunistic col-

laboration is that they be capable of temporal flexibility and threading. Together

these features allow the ‘upgrading’ of conversations from asynchronous memo-like

transactions to near-synchronous conversational interchange. Crucially the temporal

flexibility of the medium allows the conversation to move smoothly between these

two forms, without requiring a change of venue and archiving system or pre-planned

shifts. Email lists have this curious affordance while many other capable media, like

telephones, do not because they have limited archiving capability. Threading is im-

portant because it allows participants to conduct multiple, overlapping conversations

without extra effort to distinguish between topics (as is required in IRC chats, for

example).

8.4 Potential for adaptation

The conditions outlined above, in conjunction with the model outlined in Chapter 7

allow us to consider challenges to adapting the FLOSS model of organization in

other environments. This section considers three, from most likely to least likely:

Wikipedia, Open Hardware and documents prepared during political advocacy.

Wikipedia

The reasons for the success of Wikipedia seem reasonably likely to be similar to those

suggested for FLOSS in this dissertation. Indeed Wikipedia was explicitly modeled

on FLOSS collaboration. Wiki projects have little to no upfront investment and the

CHAPTER 8. DISCUSSION 215

vast majority of participants are volunteer individuals working without pay or other

formal external motivation. The motivations of participants are not as well researched

as for FLOSS (but see Kuznetsov, 2006; Nov, 2007; Schroer and Hertel, 2006), but it

is generally held that people are working on the basis of internal motivations.

Crucially, the GNU Free Documentation License6 currently used throughout Wikipedia

ensures that past contributions are available and non-revocable, stating explicitly

(point 9) that,

parties who have received copies, or rights, from you under this License

will not have their licenses terminated so long as such parties remain in

full compliance.

It is plausible that participants are motivated by annoyance while reading an

article and quickly assess the effort required to have it match their expectations,

contributing in short interactions that build up overtime and are available to fu-

ture participants (Crowston and Fagnot, 2008). These contributions are immediately

available—even faster than in FLOSS—because they aren’t moderated or otherwise

delayed. In this way the payoff is immediate available, whatever motivation is driving

it.

The work is clearly layerable through individual opportunistic contributions, even

more so than FLOSS; pages often have many separate contributors, even if one or

two people contributed the bulk of the work. Empirical work on these patterns

of contribution is emerging. For example, Kittur and Kraut (2008) examined the

concentration of editing on a page, finding a Gini co-efficient of 0.25 and a median

number of all-time editors per page of 11. They also found that the more concentrated

pages tended to be of higher quality and that the core group of editors tended to make

larger contributions (as well as being more frequent) (Kittur et al., 2007). Similarly

6http://en.wikipedia.org/wiki/Wikipedia:

Text of the GNU Free Documentation License

http://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License
http://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License
http://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License

CHAPTER 8. DISCUSSION 216

Ortega et al. (2008) found that fewer than 10% of the editors were responsible for over

90% of the English contributions (and that this typically varied between 80%–85%

in other languages).

These figures are not directly analogous to the work reported in this dissertation,

rather they are analogous to earlier similar findings regarding skews in contributions

per file in FLOSS. The task-level analysis presented here would require examining

work in a more contextual fashion, finding a middle-ground unit of analysis somewhere

between all-time contributors to a page and individual edits. Aspects of Wikipedia,

such as on-going improvement projects and category wide metadata systems may

exhibit higher levels of Co work.

The availability of full edit history and easy reversion means that it is rewindable,

something that is more important and far more common than in FLOSS develop-

ment. The process of editing and submission allows participants to integrate their

elements in situ, although the emergence of a hierarchy of editors indicates that in-

tegration of new content is a separate task in the Wikipedia world. Judging what is

meant by acceptable integration is a far more qualitative task when a compiler is not

immediately indicating all syntactical and some semantic conflicts.

The communication structure of the collaboration is simpler than that of FLOSS,

being almost exclusively undertaken through the Talk pages that accompany each

page. Longer term projects for improving Wikipedia, such as Featured Content or

cross-page topical improvement projects are conducted in open ways that facilitate

casual contribution, while still providing overall structure.

The clear similarities should not obscure the differences, however. For example

the Wikipedia Foundation was formed prior to the existence of the material, rather

than afterwards. Furthermore, while the content is in principle non-exhaustible, in

practice Wikipedia is an enormous consumer of bandwidth, far beyond even the whole

Sourceforge site. This is because unlike a downloadable application, Wikipedia is

CHAPTER 8. DISCUSSION 217

essentially instantiated and distributed for each individual use of the shared product,

and though each individual view is cheap, in aggregate this is very expensive. Future

research should carefully assess where to draw analogous boundaries between projects

and supporting infrastructure providers, like Sourceforge.

Open Hardware

The Open Hardware movement is a second online collaboration which has explicitly

attempted to adapt the FLOSS model of organization. This has been less successful

than that of Wikipedia. The aim of the Open Hardware movement is to radically

lower the cost of hardware and to radically increase the speed of innovation. Examples

include projects like the Simputer7 and OScar8 (Open Source Car).

The primary impediment to repeating the success of the FLOSS model of organi-

zation is that hardware has high instantiation and distribution costs. A circuit board

must be designed before it is printed and transported to where it is needed, all this

must happen before, not during, the integration process. For this reason Open Hard-

ware has proceeded in two ways. The first is focusing on the design stage, sharing

schematics and other documents. The second is to take advantage of the increasing

informationalization of hardware.

Focusing on the design stage is relatively simple because designs are informa-

tion artifacts, very similar to software. Circuit board designs can be tested in silica

through simulators which work very much like compilers. However the entire enter-

prise has a clear unsatisfied utility dependency: in order to deliver the use payoff the

informational presentation is not sufficient, the actual hardware must be built.

The second method is to take advantage of increasingly flexible and reconfigurable

hardware, such as field programable gate arrays (FPGAs) and other programable logic

7http://www.simputer.org

8http://www.theoscarproject.org

http://www.simputer.org
http://www.theoscarproject.org
http://www.simputer.org
http://www.theoscarproject.org

CHAPTER 8. DISCUSSION 218

devices. This provides the opportunity to update hardware “in the field” (at the end-

user’s premises), providing the opportunity to lower instantiation and distribution

costs. Nonetheless the sheer physicality of hardware, such as a car, means that its

production and distribution are always going to be more costly than software alone.

Burns and Howison (2001) argued that this feature protects hardware from impacts

of informationalization, such as the Napster effect on music. Yet it also restricts the

usefulness of the FLOSS mode of production, short of the development of effective

fabricator technologies

Some point to nano-technology and 3D printers to radically informationalize hard-

ware, which might not be that far away9. If the promise of these technologies is real-

ized then the potential for organizing the production of hardware based on techniques

like layered individual work and deferral will improve.

Policy advocacy

There have also been calls for bringing FLOSS organization to voluntary political

activity, such as groups seeking to contribute to various “calls for comment” in gov-

ernment decision making (e.g. Cogburn et al., 2005). Some aspects of this work seem

promising for a FLOSS model of contribution: the work is informationalized (produc-

ing an electronic written document) and can be built in layers. It is quite plausible

that the participants are individually motivated and little upfront investment is re-

quired.

Yet two aspects limit the applicability of the organizational techniques described

in this dissertation. The first is that the processes these efforts are focused upon

have inherent deadlines because contributions have to be finished and submitted at

a certain time set by governments. The second is that the overall intention of the

activity, and likely its motivation, is dependent on the document having an effect

9http://reprap.org

http://reprap.org

CHAPTER 8. DISCUSSION 219

on political decision making and the real world. The path to such effects is not

impossible, many have identified epistemic communities as effective in policy making

(e.g. Haas et al., 1977). Yet even when successful the payoff is necessarily delayed

and individual layers do not have their own payoffs. In these ways the work is more

similar to attempting concurrent development of a single layer of software, and the

risks of collaboration are not defrayed.

In summary these three explorations demonstrate a central point of this disser-

tation: the socio-technical organizational structure at play in community-based open

source projects is quite specific and will not easily adapt to other environments. The

Introduction pointed to the prevailing optimism that FLOSS can teach us a great

deal about distributed work. The work in this dissertation suggests that this process

will need to be far more nuanced than expected. For example, it seems unlikely that

commercial software development companies will seek to adopt the practice of de-

ferral (since it is likely to lead to missed deadlines), yet this practice is fundamental

to achieving the dominance of layered individual work that lines up so closely with

the individual motivations of participants. Unpicking the reinforcing bundle of in-

stitutions, characteristics, practices, technologies and organizational attributes seems

likely to require a great deal of innovation to be successful.

8.5 Conclusion

This Discussion chapter has demonstrated that the dissertation has provided answers

to all three of its research questions. The empirical results and the explanatory model

provide answers to the first two research questions and describe what is different or

unique in FLOSS organizing; its “something else”. The conditions necessary for the

model to operate provide a framework to consider efforts to adapt the model for other

types of work and in other environments. This framework was used to examine three

CHAPTER 8. DISCUSSION 220

real examples of attempted FLOSS adaptation and is therefore an answer to the third

research question.

Chapter 9

Conclusion

9.1 Contributions

Until this dissertation there has not been a model of FLOSS organization that draws

together the motivations of participants, the technologies of collaboration and the

experience and organization of production. This dissertation has presented such a

model, shown that it is closely grounded in the empirical data and demonstrated its

usefulness in assessing where FLOSS organization might successfully be adapted.

This dissertation makes a contribution to Information Systems because it is a

socio-technical theory where the IT artifact (Orlikowski and Iacono, 2001; Benbasat

and Zmud, 2003) plays a double role. Firstly, as the subject of production, the

flexibility of the IT artifact plays a crucial role because it allows layering and deferral

to work. Software is also easily and cheaply instantiated and this, combined with

the low cost and high speed of internet distribution, is crucial to the motivational

feedback cycles thought to be important to developer motivation. Finally, the specific

affordances of technologies of collaboration such as CVS and email play a central role

in the theory. For example the ability to identify and help resolve conflicts that CVS

offers its users are vital to realizing the additive and layered potential of software.

221

CHAPTER 9. CONCLUSION 222

Similarly the temporal flexibility of email allows participants to opportunistically

support each other in their largely individual work.

A contribution is also made to Organizational Science because a new model of

organizing is described and analyzed. In particular this model of organizing exam-

ines a phenomenon where the task is not structurally determining the appropriate

way to organize, but rather organization is emergent, shaped by the resource con-

text and extremely flexible technologies of production and collaboration. In addition

the description of “strategic deferral” as an effective component of organization that

converts a situation which would usually require risky reciprocal person-to-person de-

pendency into two relatively straightforward person-object dependencies is believed

to be novel. In addition a contribution is made to the tradition of studies of inter-

dependency described in Chapter 4 by studying the type of interdependency that

emerges in a volunteer, distributed environment with a flexible task.

Finally this dissertation makes a contribution to Software Engineering because

it is a well grounded empirical study that can assist those seeking to take software

development seriously as a collaborative endeavor. Some of the most enduring studies

in Software Engineering, such as Brook’s law (Brooks, 1975), come out of a combi-

nation of participation and theorizing as displayed in this dissertation. In particular

the theory advanced here may provide an analytically sound basis for understanding

why agile software development is such a motivating alternative to the pre-planned

specification of the waterfall model.

Beyond these contributions the archival method used in the replication study

is a potentially useful contribution for those attempting to make sense of activity

that is recorded in growing online archives. These archives provide evidence about

sociality from projects as well known as Wikipedia to small online health support

communities. Similarly, massive collaboration supported by internet technologies are

touted as being important for political negotiation and democracy. The study of

CHAPTER 9. CONCLUSION 223

these phenomena can learn from the archival method in this dissertation, especially

as it comes to separating archives-as-documentary-evidence and archives-as-explicit-

actions.

Finally, as discussed in the Introduction, all of the data and intermediate arti-

facts for this dissertation are being made publicly available, through the FLOSSmole

project (Howison et al., 2006). The Task catalogue may provide an advanced ba-

sis for further studies of FLOSS, as well as a teaching resource for those interested

in showing how work actually unfolds in FLOSS projects. The ontologies and data

representations developed in the course of the research also illustrate the promise of

RDF and OWL for effective cross-repository data linking (Howison, 2008).

9.2 Future Research

The findings and theory of this dissertation suggest four courses of future research:

Formalizing and testing the model, confirming empirical findings, detailed studies of

FLOSS adaptation attempts and exploration of strategic deferral in other environ-

ments.

Formalizing and Testing the Model

The model advanced in this dissertation can be further formalized leading to greater

clarity and certainty about its predictions. It should be possible to examine the

combined effects of the individual decisions on the dynamics of a project through a

multi-agent simulation. The simulation would allow testing the effect of different pa-

rameters, such as the motivational/confidence effects of success and failure in tasks.

Feedbacks between multiple turns could reveal unexpected non-linear behaviors, es-

pecially once one is able to model use and recruitment effects. The results of work

could be modeled in a way that would allow comparison to real empirical data on

CHAPTER 9. CONCLUSION 224

the success of FLOSS projects. Such a model would allow formal exploration of the

“hare and tortoise” suggestions in Chapter 8 as well as quantifying the needed size

of parameters for the predictions to match empirical findings.

The motivational effects of the experience of production are at the heart of this

dissertation, yet they are not tested directly. It would be excellent to have empirical

data for the hypothesis of differential effects from individual success and Co work

failures. Since this study would have to proceed over time it should be designed as

a panel study, possibly using a combination of diaries and surveys, such as those

developed for testing the job design models discussed on page 146. Such a study

would be invasive and require serious commitment from FLOSS developers, as such

it might be best to conduct it with the blessing of a major umbrella organization like

Debian or the Apache Foundation. It might also be possible to examine the effects

in a laboratory study, using concocted teams and tasks.

One of the missing features of this model is that there is little insight into why Co

work occurs at all. The model merely offers suggestions that it relates to the com-

plexity and desirability of the task and might be supported by a history of observed

successes of others which demonstrate skill and commitment, building cognitive and

affective trust. The literature on the origins and stability of organizational routines

(Gersick and Hackman, 1990; Feldman, 2000; Orlikowski and Yates, 1994; Becker,

2004) suggests other potential determinants, such as importation from other environ-

ments (recalling that FLOSS is embedded in other cultures of software development)

and emphasizing path-dependency effects which might play an important role in a

project’s ability to balance co- and individual work during an exogenous ebb of de-

veloper availability and attention.

As discussed in the Discussion the question of the role of structural modularity in

the codebase should be examined further, to see if the incremental individual work

reported here relates to traditional metrics of coupling and cohesion.

CHAPTER 9. CONCLUSION 225

Confirmation of empirical findings

The work would benefit from an improvement and expansion of the empirical results

of the task-level findings reported in Chapter 5. The findings could be improved by

the introduction of a reliability study, and expanded through study of other inter-

release periods and, of course, more projects. It would be excellent to find content

analytic coders able to replicate the archival reconstruction, and Chapter 5 provides

a number of suggestions to that end. Unfortunately the ability to read code and

to analyze behavior is a relatively rare combination. However when the work is

publicized it might be the case that FLOSS developers themselves are motivated to

improve the work and willing to spend time being trained, or other coders might

be found in the relatively small number of researchers interested in empirical and

organizational studies of software engineering.

Fire and Gaim were studied during successful phases of the projects. It would also

be desirable to examine the reliability of the findings across the lives of these projects,

by coding data from additional inter-release periods, especially as Fire begins to

decline in effectiveness. Furthermore it would be interesting to examine the archives

of critical cases of FLOSS development, such as Linux, to see if the method can

provide insight into the task-level organization of these projects at different phases

of their existence. Finally it would be worthwhile examining projects that undergo

a change in some of the conditions identified as important for the operation of the

model. For example one could examine a move from a community-based origin to

a hybrid structure, such as when a commercial entity is formed and employs key

participants. The converse would also be interesting, when a commercial entity spins

out a project as FLOSS, such as the Firefox project. Such studies of hybrid situations

would be strongly enriched by the understanding of more “pure” cases of community-

based FLOSS presented in this dissertation.

CHAPTER 9. CONCLUSION 226

Detailed studies of FLOSS adaptation

The model provides insight into why particular features of the FLOSS environment

are crucial to FLOSS organization and the Discussion (Chapter 8) used this to ex-

amine three environments which have attempted to adapt FLOSS organizational

techniques. These are currently little more than speculations and would benefit from

extended empirical inquiries adopting the task operationalizations and analysis from

Chapter 5. The archives of Wikipedia provide the potential for a task level analysis,

as do the archives of both Open Hardware and Policy advocacy efforts. Care would

need to be taken to ensure that the concept of Task was specified with enough con-

textual or emic understanding of the work, developed through interviews or through

participation. The literature is sorely in need of structured comparative studies of

these similar seeming instances of technology-supported distributed massive collab-

oration. Unfortunately most studies are, at best, similar to this dissertation in that

they examine one phenomenon in detail and compare the other based on a limited

empirical understanding.

Another possibility for examining the adaptation of FLOSS organizational tech-

niques is to pursue action research with groups attempting to move their work towards

a FLOSS model. Action research would design interventions, such as the introduc-

tion of particular technologies and practices designed to make work more additive

and open to layered production. Such work may provide insight into the process of

adaptation itself, whereby path effects in organizational change towards a FLOSS

model could be further understood. Such path effects might be crucial to successful

change.

Examination of “Strategic Deferral” in other environments

Finally it would be worthwhile taking up the idea of “strategic deferral” and exam-

ining whether it occurs in other contexts. For many years the production choices

CHAPTER 9. CONCLUSION 227

of traditional for-profit organizations have been framed as a choice between “build

or buy”, either developing an innovative product internally or purchasing an innova-

tion through the market. Perhaps that choice could, in some circumstances, now be

framed as “build, buy or wait”?

Deferral is sometimes successful in FLOSS because the landscape—the codebase—

is constantly changing and provides new resources to understand and implement

production differently. The effort and risk of the ‘hard way’ is avoided, with the

trade-off being delay. Sometimes the situation never changes, sometimes changes

may even make the innovation more difficult to conceptualize and implement. But

sometimes unconnected, unplanned changes make work easier. It seems possible that

this process could play out in other environments, where the benefit of being “first to

market” is outweighed by the risky effort to build internally or the cost of purchasing.

Instead, in fields with rapidly changing resource profiles, it might make strategic sense

to conserve capital (or effort) until the business problem is easier to solve. Indeed

the success of RedHat in building a business on top of and utilizing the ecosystem of

open source (as well as contributing back to it) suggests that deferral and a kind of

“strategic grazing” to package the results of massive voluntary collaboration might

be the most flexible strategy for benefiting from FLOSS organizing in other domains.

9.3 In conclusion

The development and success of community-based FLOSS development is as inter-

esting as it is surprising. This dissertation suggests that its success is the result of

fit between the motivations of participants, the affordances of the informationalized

task and the socio-technical infrastructure of work and organizing. A key overarch-

ing process making this form of organization possible is the informationalization of

human activity together with a pervasive excess capacity in communication infras-

CHAPTER 9. CONCLUSION 228

tructures. These processes do seem likely to continue and to pervade other areas of

human activity. To the extent that they do there are good possibilities for adapting

these ways of organizing to other kinds of work.

Yet the work in this dissertation sounds a strong note of caution in that assess-

ment. The components of the socio-technical configuration described here reinforce

each other, creating a bundle which works in its place, but which may prove tricky

to ‘unpick’ for piecemeal adaptation in other kinds of work. Organizations seeking

to harness the power of individual layered work may, for example, have to learn to

tolerate or embrace practices of deferral.

The organization of community-based FLOSS development seems to provide a

way forward for work outside the boundaries of traditional invest-and-control orga-

nization, offering autonomous, satisfying and useful work. Working together alone—

individually in company—may offer a way forward, a way out of the traps of exploita-

tion and alienation common across many fields of human endeavor. Yet it will not be

a simple process, and much innovation—both technical and social—will be required

to realize this potential. If this can be done—and it is far from easy—FLOSS may

indeed realize its promise of a truly optimistic and emancipatory future of work.

Bibliography And Appendices

229

Details of Illustrative Tasks

230

DETAILS OF ILLUSTRATIVE TASKS 231

Figure 1: Fire Task 2: Manual Browser Security Fix

Ep: http://floss.syr.edu/ontologies/2008/task-data#gaim_period1_0002
Label: manual browser security fix
Start: Jul 20 2002 17:32:12 GMT+0000
End: Aug 25 2002 02:42:57 GMT+0000
Duration: 35D 9h 10m 45s
Actor Order: [kareemy] [lschiere] [robot101] [seanegan] [seanegan] [chipx86] [seanegan]
Action Order: [useInformationProvision] [useInformationProvision] [coreProductionWork] [reviewWork] [
polishingProductionWork] [coreProductionWork] [managementWork]
Memo: Looks like seanegan applied a patch supplied by Robert McQueen, from a Bug report by Kareem Dana, commented on by Luke.

Action: http://floss.syr.edu/ontologies/2008/task-data#action_Gaim1DocumentToEpisodeMapping_72
<kareemy> *reports bug with manual browser* (Jul 20 2002 17:32:12 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [TrackerSubmissionEvent]
DocList: [http://sourceforge.net/tracker/?group_id=235&atid=100235&func=detail&aid=584252#submission_document]
ActionCodeApplied: [task-codes:useInformationProvision]
Details: Kareem Dua reports the bug that is eventually fixed in this Task
Memo:

 Gap:1D 5h 50m 1s
Action: http://floss.syr.edu/ontologies/2008/task-data#action_Gaim1DocumentToEpisodeMapping_43
<lschiere> *assists with bug diagnosis* (Jul 21 2002 23:22:13 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [TrackerCommentEvent]
DocList: [http://sourceforge.net/tracker/?group_id=235&atid=100235&func=detail&aid=584252#comment_375242_document]
ActionCodeApplied: [task-codes:useInformationProvision]
Details: Luke Schiere replies to bug report with off the cuff assistance with diagnosis; he is actually wrong
Memo:

 Gap:20D 9h 41m 18s
Action: http://floss.syr.edu/ontologies/2008/task-data#action_Gaim1DocumentToEpisodeMapping_150
<robot101> *writes and conveys patch (implied)* (Aug 11 2002 09:03:31 GMT+0000)
Type: task:DatedImpliedAction
EventTypeList: [SoftwareReleaseEvent]
DocList: [http://sourceforge.net/project/shownotes.php?release_id=107126group_id235#change_note]
ActionCodeApplied: [task-codes:coreProductionWork]
Details: The change note thanks Robert McQueen for this fix, so this is an ImpliedAction as a place holder for McQueen's action.
Memo: ImpliedAction, note that this means the hasTime is approximate. This Action is implied from the thanks_quote of the Task
outcome, I can't find archival evidence for the Patch. Linked by full RealName: Robert McQueen == robot101

 Gap:900 ms
Action: http://floss.syr.edu/ontologies/2008/task-data#action_Gaim1DocumentToEpisodeMapping_176
<seanegan> *checks in manual browser fix* (Aug 11 2002 09:03:32 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [SvnCommitEvent]
DocList: [http://gaim.svn.sourceforge.net/viewvc/gaim?view=rev&revision=3412#document]
ActionCodeApplied: [task-codes:reviewWork]
Details: Sean Egan checks in the primary fix to the manual browser
Memo:

 Gap:10D 18h 10m 7s
Action: http://floss.syr.edu/ontologies/2008/task-data#action_Gaim1DocumentToEpisodeMapping_110
<seanegan> *tweaks manual browser fix* (Aug 22 2002 03:13:39 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [SvnCommitEvent]
DocList: [http://gaim.svn.sourceforge.net/viewvc/gaim?view=rev&revision=3436#document]
ActionCodeApplied: [task-codes:polishingProductionWork]
Details:
Memo:

 Gap:1D 20h 8m 47s
Action: http://floss.syr.edu/ontologies/2008/task-data#action_Gaim1DocumentToEpisodeMapping_34
<chipx86> *alters McQueen/Sean's fix* (Aug 23 2002 23:22:26 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [SvnCommitEvent] [SvnCommitEvent]
DocList: [http://gaim.svn.sourceforge.net/viewvc/gaim?view=rev&revision=3440#document] [
http://gaim.svn.sourceforge.net/viewvc/gaim?view=rev&revision=3441#document]
ActionCodeApplied: [task-codes:coreProductionWork]
Details: chip alters robot101/Sean's fix, making it much shorter and, presumably, more robust. This occurs on the Trunk
Memo: Merged two documents < 2 hours apart

 Gap:1D 3h 20m 31s
Action: http://floss.syr.edu/ontologies/2008/task-data#action_Gaim1DocumentToEpisodeMapping_108
<seanegan> *moves fix to branch for release* (Aug 25 2002 02:42:57 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [SvnCommitEvent]
DocList: [http://gaim.svn.sourceforge.net/viewvc/gaim?view=rev&revision=3449#document]
ActionCodeApplied: [task-codes:managementWork]
Details: Sean moves Chip's fix, which is a shorter replacement for the one he checked in, to the branch.
Memo: The SVN checkin here is Sean acknowledging that chip's fix is better than the one he checked in. Open question as to
whether this is part of the same Task, perhaps it's actually part of the Task to create the branch?

DETAILS OF ILLUSTRATIVE TASKS 232

Figure 2: Gaim Task 34: TOC and ICQ Plugin removed, and Fire Task 57: user list
duplicate fix

Ep: http://floss.syr.edu/ontologies/2008/task-data#gaim_period1_0034
Label: TOC and ICQ plugin removed
Start: Aug 07 2002 23:25:33 GMT+0000
End: Aug 10 2002 02:42:55 GMT+0000
Duration: 2D 3h 17m 22s
Actor Order: [seanegan] [chipx86] [chipx86]
Action Order: [coreProductionWork] [polishingProductionWork] [polishingProductionWork]
Memo: Sean removes TOC and the ICQ plugin (both are old access methods, retired by OSCAR). He does some
resulting cleanup of the build system and documents it in ChangeLog. A little later Chip fixes some errors in
Sean's changes

Action: http://floss.syr.edu/ontologies/2008/task-data#action_Gaim1DocumentToEpisodeMapping_64
<seanegan> *removes TOC and ICQ plugin from build process* (Aug 07 2002 23:25:33 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [SvnCommitEvent] [SvnCommitEvent]
DocList: [http://gaim.svn.sourceforge.net/viewvc/gaim?view=rev&revision=3401#document] [
http://gaim.svn.sourceforge.net/viewvc/gaim?view=rev&revision=3402#document]
ActionCodeApplied: [task-codes:coreProductionWork]
Details:
Memo:

 Gap:18h 16m 35s
Action: http://floss.syr.edu/ontologies/2008/task-data#action_Gaim1DocumentToEpisodeMapping_36
<chipx86> *reverts a portion of Sean's changes, fixing the build* (Aug 08 2002 17:42:08 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [SvnCommitEvent]
DocList: [http://gaim.svn.sourceforge.net/viewvc/gaim?view=rev&revision=3406#document]
ActionCodeApplied: [task-codes:polishingProductionWork]
Details:
Memo:

 Gap:1D 9h 47s
Action: http://floss.syr.edu/ontologies/2008/task-data#action_Gaim1DocumentToEpisodeMapping_75
<chipx86> *fixes a bug in Sean's removal of TOC* (Aug 10 2002 02:42:55 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [SvnCommitEvent]
DocList: [http://gaim.svn.sourceforge.net/viewvc/gaim?view=rev&revision=3409#document]
ActionCodeApplied: [task-codes:polishingProductionWork]
Details:
Memo:

Ep: http://floss.syr.edu/ontologies/2008/task-data#fire_period1_57
Label: user list duplicate fix
Start: Dec 06 2002 04:06:13 GMT+0000
End: Dec 06 2002 04:06:13 GMT+0000
Duration: --zero--
Actor Order: [gbooker]
Action Order: [coreProductionWork]
Memo: gb fixes a bug with user list duplicates. Only the CVS checkin is found, not communications related to
it

Action: http://floss.syr.edu/ontologies/2008/task-data#action_Fire1DocToEpMapping_372
<gbooker> *fixes user list duplicates bug* (Dec 06 2002 04:06:13 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [SvnCommitEvent]
DocList: [http://fire.svn.sourceforge.net/viewvc/fire?view=rev&revision=1843#document]
ActionCodeApplied: [task-codes:coreProductionWork]
Details:
Memo:

DETAILS OF ILLUSTRATIVE TASKS 233

Figure 3: Gaim Task 3: iconv library integrated and Gaim Task 7-5: change default
options

Ep: http://floss.syr.edu/ontologies/2008/task-data#gaim_period1_0003
Label: iconv library integrated
Start: Aug 02 2002 04:33:50 GMT+0000
End: Aug 02 2002 05:19:52 GMT+0000
Duration: 46m 2s
Actor Order: [seanegan] [seanegan] [seanegan]
Action Order: [coreProductionWork] [documentationWork] [coreProductionWork]
Memo: Thread http://sourceforge.net/tracker/?group_id=235&atid=300235&func=detail&aid=576704 might be relevant,
as might http://sourceforge.net/tracker/?group_id=235&atid=100235&func=detail&aid=486037. Can't find the
relevant SVN commit; presumably it will be a left over, when I will search for the author of the release notes.
Maybe: http://pidgin.svn.sourceforge.net/viewvc/pidgin/trunk/gaim/src/core.h?r1=3386&r2=3385&pathrev=3386

Action: http://floss.syr.edu/ontologies/2008/task-data#action_Gaim1DocumentToEpisodeMapping_19
<seanegan> *checks in iconv* (Aug 02 2002 04:33:50 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [SvnCommitEvent]
DocList: [http://gaim.svn.sourceforge.net/viewvc/gaim?view=rev&revision=3380#document]
ActionCodeApplied: [task-codes:coreProductionWork]
Details: Sean checks in code that draws on iconv for international character conversion; the SVN commit message
'We've returned' perhaps indicates a return from post-release slow down?
Memo:

 Gap:19m 52s
Action: http://floss.syr.edu/ontologies/2008/task-data#action_Gaim1DocumentToEpisodeMapping_44
<seanegan> *announces iconv via ChangeLog* (Aug 02 2002 04:53:42 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [SvnCommitEvent]
DocList: [http://gaim.svn.sourceforge.net/viewvc/gaim?view=rev&revision=3387#document]
ActionCodeApplied: [task-codes:documentationWork]
Details: Sean announces the intergration of iconv via the ChangeLog
Memo: The SVN commit message indicates that the ChangeLog is the communication system for code changes

 Gap:26m 10s
Action: http://floss.syr.edu/ontologies/2008/task-data#action_Gaim1DocumentToEpisodeMapping_117
<seanegan> *intergrates iconv library* (Aug 02 2002 05:19:52 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [SvnCommitEvent] [SvnCommitEvent]
DocList: [http://gaim.svn.sourceforge.net/viewvc/gaim?view=rev&revision=3389#document] [
http://gaim.svn.sourceforge.net/viewvc/gaim?view=rev&revision=3390#document]
ActionCodeApplied: [task-codes:coreProductionWork]
Details: Sean Egan checks in more code changes that integrate iconv; the second check-in is a bugfix for the
first.
Memo: Three CVS commits put together as an action because they are < 2 hours apart

Ep: http://floss.syr.edu/ontologies/2008/task-data#gaim_period1_0007_5
Label: change default options
Start: Aug 02 2002 04:52:48 GMT+0000
End: Aug 02 2002 04:53:42 GMT+0000
Duration: 54s
Actor Order: [seanegan] [seanegan]
Action Order: [coreProductionWork] [documentationWork]
Memo: seanegan Changes some default options The change note change doesn't in make it to 0.59.1

Action: http://floss.syr.edu/ontologies/2008/task-data#action_Gaim1DocumentToEpisodeMapping_23
<seanegan> *checks in change to default options* (Aug 02 2002 04:52:48 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [SvnCommitEvent]
DocList: [http://gaim.svn.sourceforge.net/viewvc/gaim?view=rev&revision=3386#document]
ActionCodeApplied: [task-codes:coreProductionWork]
Details: Sean, in amongst a set of other changes, checks in a change of default options
Memo:

 Gap:54s
Action: http://floss.syr.edu/ontologies/2008/task-data#action_Gaim1DocumentToEpisodeMapping_82
<seanegan> *changes ChangeLog for default options* (Aug 02 2002 04:53:42 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [SvnCommitEvent]
DocList: [http://gaim.svn.sourceforge.net/viewvc/gaim?view=rev&revision=3387#document]
ActionCodeApplied: [task-codes:documentationWork]
Details: In amongst a set of changes (mostly from 3386), Sean includes the change of default options
Memo:

DETAILS OF ILLUSTRATIVE TASKS 234

Figure 4: Fire Task 29: aim buddy icons

Ep: http://floss.syr.edu/ontologies/2008/task-data#fire_period1_29
Label: aim buddy icons
Start: Oct 27 2002 02:58:32 GMT+0000
End: Nov 04 2002 01:44:40 GMT+0000
Duration: 7D 22h 46m 8s
Actor Order: [gbooker] [gbooker] [gbooker] [gbooker] [gbooker] [gbooker] [gbooker] [gbooker]
Action Order: [coreProductionWork] [documentationWork] [polishingProductionWork] [polishingProductionWork] [
polishingProductionWork] [polishingProductionWork] [polishingProductionWork] [polishingProductionWork]
Memo: gbooker adds buddy icons; this seems to be related to libfaim, but also related to the file transfer code in someway?

Action: http://floss.syr.edu/ontologies/2008/task-data#action_Fire1DocToEpMapping_216
<gbooker> *documents completion of buddy icons* (Oct 27 2002 02:58:32 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [SvnCommitEvent]
DocList: [http://fire.svn.sourceforge.net/viewvc/fire?view=rev&revision=1574#document]
ActionCodeApplied: [task-codes:documentationWork]
Details:
Memo:
 Gap:--zero--
Action: http://floss.syr.edu/ontologies/2008/task-data#action_Fire1DocToEpMapping_503
<gbooker> *checks in buddy icon receiving code* (Oct 27 2002 02:58:32 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [SvnCommitEvent]
DocList: [http://fire.svn.sourceforge.net/viewvc/fire?view=rev&revision=1574#document]
ActionCodeApplied: [task-codes:coreProductionWork]
Details:
Memo:
 Gap:39m 3s
Action: http://floss.syr.edu/ontologies/2008/task-data#action_Fire1DocToEpMapping_59
<gbooker> *polishes buddy icons, adding jpg* (Oct 27 2002 03:37:35 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [SvnCommitEvent]
DocList: [http://fire.svn.sourceforge.net/viewvc/fire?view=rev&revision=1575#document]
ActionCodeApplied: [task-codes:polishingProductionWork]
Details:
Memo:
 Gap:1h 22m 22s
Action: http://floss.syr.edu/ontologies/2008/task-data#action_Fire1DocToEpMapping_413
<gbooker> *polishes buddy icons, adding bitmaps* (Oct 27 2002 04:59:57 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [SvnCommitEvent]
DocList: [http://fire.svn.sourceforge.net/viewvc/fire?view=rev&revision=1576#document]
ActionCodeApplied: [task-codes:polishingProductionWork]
Details:
Memo:
 Gap:12h 1m 39s
Action: http://floss.syr.edu/ontologies/2008/task-data#action_Fire1DocToEpMapping_12
<gbooker> *polishing buddyicons* (Oct 27 2002 17:01:36 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [SvnCommitEvent]
DocList: [http://fire.svn.sourceforge.net/viewvc/fire?view=rev&revision=1577#document]
ActionCodeApplied: [task-codes:polishingProductionWork]
Details: save as .buddyicon
Memo:

 Gap:3D 13h 1m 50s
Action: http://floss.syr.edu/ontologies/2008/task-data#action_Fire1DocToEpMapping_550
<gbooker> *fixes buddy icon for IRC* (Oct 31 2002 06:03:26 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [SvnCommitEvent]
DocList: [http://fire.svn.sourceforge.net/viewvc/fire?view=rev&revision=1594#document]
ActionCodeApplied: [task-codes:polishingProductionWork]
Details:
Memo:
 Gap:3D 18h 34m 51s
Action: http://floss.syr.edu/ontologies/2008/task-data#action_Fire1DocToEpMapping_526
<gbooker> *polishing buddy icons* (Nov 04 2002 00:38:17 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [SvnCommitEvent]
DocList: [http://fire.svn.sourceforge.net/viewvc/fire?view=rev&revision=1641#document]
ActionCodeApplied: [task-codes:polishingProductionWork]
Details: memory related
Memo:
 Gap:1h 6m 23s
Action: http://floss.syr.edu/ontologies/2008/task-data#action_Fire1DocToEpMapping_144
<gbooker> *polishing buddy icons (memory fix)* (Nov 04 2002 01:44:40 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [SvnCommitEvent]
DocList: [http://fire.svn.sourceforge.net/viewvc/fire?view=rev&revision=1644#document]
ActionCodeApplied: [task-codes:polishingProductionWork]
Details:
Memo:

DETAILS OF ILLUSTRATIVE TASKS 235

Figure 5: Gaim Task 18: Finnish Translation

Ep: http://floss.syr.edu/ontologies/2008/task-data#gaim_period1_0018
Label: Finnish Translation
Start: Jul 02 2002 23:51:04 GMT+0000
End: Jul 02 2002 23:51:05 GMT+0000
Duration: 1 ms
Actor Order: [teroajk] [robflynn] [robflynn]
Action Order: [coreProductionWork] [reviewWork] [assigingCredit]
Memo: robflynn adds the Finnish Translation, to the 0.60 changenote area.

Action: http://floss.syr.edu/ontologies/2008/task-data#action_Gaim1DocumentToEpisodeMapping_164
<teroajk> *updates Finnish Translation* (Jul 02 2002 23:51:04 GMT+0000)
Type: task:UnDatedImpliedAction
EventTypeList: [SvnCommitEvent]
DocList: [http://gaim.svn.sourceforge.net/viewvc/gaim?view=rev&revision=3364#document]
ActionCodeApplied: [task-codes:coreProductionWork]
Details: Rob Flynn thanks Tero Kuusela in the ChangeLog; therefore he must have updated the Translation.
Memo:

 Gap:1 ms
Action: http://floss.syr.edu/ontologies/2008/task-data#action_Gaim1DocumentToEpisodeMapping_14
<robflynn> *thanks Finnish translator for work.* (Jul 02 2002 23:51:05 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [SvnCommitEvent]
DocList: [http://gaim.svn.sourceforge.net/viewvc/gaim?view=rev&revision=3364#document]
ActionCodeApplied: [task-codes:assigingCredit]
Details:
Memo:

 Gap:--zero--
Action: http://floss.syr.edu/ontologies/2008/task-data#action_Gaim1DocumentToEpisodeMapping_113
<robflynn> *integrates Finnish translation* (Jul 02 2002 23:51:05 GMT+0000)
Type: task:ExplicitAction
EventTypeList: [SvnCommitEvent]
DocList: [http://gaim.svn.sourceforge.net/viewvc/gaim?view=rev&revision=3364#document]
ActionCodeApplied: [task-codes:reviewWork]
Details: Rob Flynn checks updated Finnish Translations into SVN
Memo:

Bibliography

Ambrose, M. L. and Kulik, C. T. (1999). Old friends, new faces: Motivation research
in the 1990s. Journal of Management, 25:231–292.

Annabi, H. (2005). Moving from individual contribution to group learning the early
years of the Apache Web server. PhD thesis, Syracuse University.

Annabi, H., Crowston, K., and Heckman, R. (2008). Depicting what really matters:
Using episodes to study latent phenomenon. In Proceedings of the International
Conference on Information Systems (ICIS), Paris.

Arrow, H., McGrath, Joseph E., J. E., and Berdahl., J. L. (2000). Small Groups
as Complex, Systems: Formation, Coordination, Development, and Adaptation.
SAGE Publishing Co, Thousand Oaks, CA.

Bachrach, D. G., Powell, B. C., Collins, B. J., and Richey, R. G. (2006). Effects
of task interdependence on the relationship between helping behavior and group
performance. Journal of Applied Psychology, 91(6):1396–1405.

Baldwin, C. Y. and Clark, K. (2001). Design Rules: The Power of Modularity.
Harvard Business School Press, Cambridge, MA.

Bandura, A. (1997). Self-efficacy: The exercise of control. Freeman, New York.

Barley, S. R. (1986). Technology as an occasion for structuring: observations on ct
scanners and the social order of radiology depart-ments. Administrative Science
Quarterly, 31:78–108.

Barnard, C. I., Andrews, K. R., and Andrews, K. R. (1968). The Functions of the
Executive.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,
R. C., Mellor, S., Schwaber, K., Sutherl, J., and Thomas, D. (2001). Manifesto for
agile software development. Online manifesto, Non-Profit Agile Alliance.

Becker, M. C. (2004). Organizational routines: A review of the literature. Industrial
and Corporate Change, 13(4):643–678.

236

BIBLIOGRAPHY 237

Benbasat, I. and Zmud, R. W. (2003). The identity crisis within the IS disci-
pline: Defining and communicating the discipline’s core properties. MIS Quarterly,
27(2):183–194.

Bertolotti, F., Macr̀ı, D., and Tagliaventi, M. (2005). Spontaneous self-managing
practices in groups: evidence from the field. Journal of Management Inquiry,
14:366–385.

Bezroukov, N. (1999). A second look at the cathedral and bazaar. First Monday,
4(12).

Bowen, G. A. (2006). Grounded theory and sensitizing concepts. International Jour-
nal of Qualitative Methods, 5(3):1–9.

Brooks, F. P. (1975). The Mythical Man-Month: Essays on Software Engineering,
chapter The Mythical Man Month, pages 13–29. Addison-Wesley Pub Co.

Burns, M. and Howison, J. (2001). Napster fabbing: Internet delivery of physical
products. Rapid Prototyping Journal, 7(4):194–196.

Chin, P. O. and Cooke, D. (2004). Satisfaction and coordination in virtual commu-
nities. In Proceedings of the Tenth Americas Conference on Information Systems,
New York, New York.

Cogburn, D. L., Bhattacharyya, S., Sharif, R. M., Johnsen, J. F., and Howison,
J. (2005). Distributed deliberative citizens: Exploring the impact of policy col-
laboratories on transnational ngo network participation in wsis. In Proc. of ICA
Conference of the Americas.

Conklin, M. (2004). Do the rich get richer? The impact of power laws on open source
development projects. In Proceedings of Open Source 2004 (OSCON), Portland,
Oregon.

Conley, C. A. (2008). Design for quality: The case of Open Source Software De-
velopment. Unpublished doctoral dissertation, New York University, New York,
NY.

Conway, M. E. (1968). How do committees invent? Datamation, 149(4329):28–31.

Cook, S. (2008). The contribution revolution: Letting volunteers build your business.
Harvard Business Review.

Crowston, K. (2003). A taxonomy of organizational dependencies and coordination
mechanisms. In Malone, T. W., Crowston, K., and Herman, G., editors, Tools for
Organizing Business Knowledge: The MIT Process Handbook. MIT Press, Cam-
bridge, MA.

Crowston, K., Annabi, H., and Howison, J. (2003). Defining open source software
project success. In ICIS 2003. Proceedings of International Conference on Infor-
mation Systems 2003.

BIBLIOGRAPHY 238

Crowston, K. and Fagnot, I. (2008). The motivational arc of massive virtual collabo-
ration. In Proceedings of the IFIP WG 9.5 Working Conference on Virtuality and
Society: Massive Virtual Communities, Lüneberg, Germany.

Crowston, K. and Howison, J. (2006). Assessing the health of open source communi-
ties. IEEE Computer, 39(5):89–91.

Crowston, K., Howison, J., and Annabi, H. (2006a). Information systems success
in free and open source software development: Theory and measures. Software
Process: Improvement and Practice, 11(2):123–148.

Crowston, K. and Osborn, C. S. (2003). A coordination theory approach to process
description and redesign. In Malone, T. W., Crowston, K., and Herman, G. A., ed-
itors, Organizing Business Knowledge, pages 335–369. The MIT Press, Cambridge,
MA.

Crowston, K., Rubleske, J., and Howison, J. (2006b). Coordination theory and its
application in HCI. In Zhang, P. and Galletta, D., editors, Human-Computer Inter-
action in Management Information Systems: Foundations, volume 5 of Advances
in Management Information Systems, pages 120–140. M. E. Sharpe, Inc, Armonk,
NY.

Crowston, K. and Scozzi, B. (2004). Coordination practices for bug fixing within
FLOSS development teams. In First International Workshop on Computer Sup-
ported Activity Coordination (CSAC 2004), Porto (Portugal).

Crowston, K., Wei, K., Howison, J., and Wiggins, A. (2008). Free/libre open source
software development: What we know and what we do not know. Under Review.

Crowston, K., Wei, K., Li, Q., Eseryel, U. Y., and Howison, J. (2005). Coordination
of Free/Libre Open source software development. In ICIS 2005. Proceedings of
International Conference on Information Systems 2005, Las Vegas, NV.

Drucker, P. (2002). They’re not employees, they’re people. Harvard Business Review,
80(2):70–77.

Faraj, S. and Xiao, Y. (2006). Coordination in fast-response organizations. Manage-
ment Science, 52(8):1155–1169.

Feldman, M. S. (2000). Organizational routines as a source of continuous change.
Organization Science, 11(6):611–629.

Feller, J., Fitzgerald, B., Hissam, S., and Lakhani, K. (2005). Perspectives on Free
and Open Source Software. MIT Press, Cambridge, MA.

Fielding, R. T. (1999). Shared leadership in the Apache project. Association for
Computing Machinery. Communications of the ACM, 42(4):42.

Fogel, K. (1999). Open Source Development with CVS. Coriolis Open Press, Scotts-
dale, AZ.

BIBLIOGRAPHY 239

Gacek, C. and Arief, B. (2004). The many meanings of open source. IEEE Software,
21(1):34–40.

Gao, Y., Antwerp, M. V., Christley, S., and Madey, G. (2007). A research collabora-
tory for open source software research. In the Proceedings of the 29th International
Conference on Software Enginering + Workshops (ICSE-ICSE Workshops 2007).
Minneapolis, MN.

Gersick, C. J. G. and Hackman, J. R. (1990). Habitual routines in task-performing
groups. Organizational Behavior and Human Decision Processes, 47:65–97.

Ghosh, R. A., Robles, G., and Glott, R. (2002). Free/libre and open source software:
Survey and study floss. Technical report, International Institute of Infonomics,
University of Maastricht: Netherlands.

Glaser, B. G. (1978). Theoretical sensitivity: Advances in the methodology of grounded
theory. Sociology Press, Mill Valley, CA.

Glaser, B. G. and Strauss, A. L. (1967). The discovery of grounded theory: strategies
for qualitative research. Aldine, Chicago.

González-Barahona, J. M. and Robles-Mart́ınez, G. (2003). Unmounting the “code
gods” assumption. In Proceedings of the Fourth International Conference on eX-
treme Programming and Agile Processes in Software Development (XP2003).

Greg Madey (ed) (2007+). The sourceforge research data archive (SRDA).
http://zerlot.cse.nd.edu/.

Haas, E. B., Williams, M. P., and Babai, D. (1977). Scientists and world order: The
uses of technical knowledge in international organizations. University of California
Press, Berkeley, CA.

Hackman, J. R. and Morris, C. G. (1978). Group tasks, group interaction process, and
group performance effectiveness: A review and proposed integration. In Berkowitz,
L., editor, Group Processes, volume 8 of Advances in Experimental Social Psychol-
ogy, pages 45–99. Academic Press, New York.

Hackman, J. R. and Oldham, G. R. (1980). Work Redesign. Addison- Wesley, Read-
ing, Mass.

Handy, C. (1988). Understanding voluntary organizations. Penguin Books, London.

Harrison, W. (2001). Editorial: Open source and empirical software engineering.
Empirical Software Engineering, 6(3):193–194.

Hars, A. and Ou, S. (2002). Working for free? Motivations of participating in FOSS
projects. International Journal of Electronic Commerce, 6(3):25–39.

BIBLIOGRAPHY 240

Heckman, R., Crowston, K., Li, Q., Allen, E., Eseryel, U. Y., Howison, J., and
Wei, K. (2006). Emergent decision-making practices in technology-supported self-
organizing distributed teams. In ICIS 2006. Proceedings of International Confer-
ence on Information Systems 2006.

Hemetsberger, A. (2001). Fostering cooperation on the internet: social exchange
processes in innovative virtual consumer communities. In Proceedings of the Asso-
ciation for Consumer Research (ACR) 2001, Austin, Texas. 02.

Herbsleb, J. D. and Grinter, R. E. (1999). Architectures, coordination, and distance:
Conway’s law and beyond. IEEE Software, 16(5):63–70.

Hertel, G. (2007). Motivating job design as a factor in open source governance.
Journal of Management and Governance, 11:129–137.

Hertel, G., Niedner, S., and Herrmann, S. (2003). Motivation of software developers in
open source projects: an internet-based survey of contributors to the linux kernel.
Research Policy, 32(7):1159–1177.

Herzberg, F. (1966). Work and the nature of man. World Publishing, Cleveland.

Hill, M. R. (1993). Archival Strategies and Techniques. Number 31 in Qualitative
Research Methods. Sage Publications.

Howe, J. (2006). The rise of crowd-sourcing. Wired Magazine, 14(6).

Howison, J. (2008). Cross-repository data linking with rdf and owl. towards common
ontologies for representing floss data. In Proc. of WoPDaSD (Workshop on Public
Data at International Conference on Open Source Software).

Howison, J., Conklin, M., and Crowston, K. (2006). FLOSSmole: A collaborative
repository for FLOSS research data and analysis. International Journal of Infor-
mation Technology and Web Engineering, 1(3):17–26.

Howison, J. and Goodrum, A. (2004). Why can’t I manage academic papers like
MP3s? The evolution and intent of metadata standards. In Proc. of the 2004 Col-
leges, Code and Intellectual Property Conference, number 57 in ACRL Publications
in Librarianship, College Park, MD.

Howison, J., Wiggins, A., and Crowston, K. (2008). eResearch workflows for studying
free and open source software development. In Proceedings of the Fourth Interna-
tional Conference on Open Source Software (IFIP 2.13).

Hughes, J., Lang, K. R., Clemons, E. K., and Kauffman, R. J. (2008). A unified
interdisciplinary theory of open source culture and entertainment. Technical Report
1077909, SSRN.

BIBLIOGRAPHY 241

Humphrey, S. E., Nahrgang, J. D., and Morgeson, F. P. (2007). Integrating motiva-
tional, social, and contextual work design features: A meta-analytic summary and
theoretical extension of the work design literature. Journal of Applied Psychology,
92(5):1332–1356.

Ilgen, D., Hollenbeck, J., Johnson, M., and Jundt, D. (2005). Teams in organizations:
From input-process-output models to IMOI models. Annual Review of Psychology,
56(1):517–543.

Jensen, C. and Scacchi, W. (2007). Guiding the discovery of open source software
processes with a reference model. In Feller, J., Fitzgerald, B., Scacchi, W., and
Sillitti, A., editors, Open Source Development, Adoption and Innovation, volume
234 of IFIP International Federation for Information Processing, pages 265–270.
Springer, Boston, USA.

Ke, W. and Zhang, P. (2008). Participating in open source software projects: The
role of empowerment. In Proceedings of ICIS08 HCI Workshop.

Kellogg, K., Orlikowski, W., and Yates, J. (2006). Life in the trading zone: Structur-
ing coordination across boundaries in postbureaucratic organizations. Organization
Science, 17(1):22–44.

Kiggundu, M. N. (1981). Task interdependence and the theory of job design. Academy
of Management Review, 6:499–508.

Kiggundu, M. N. (1983). Task interdependence and job design: Test of a theory.
Organizational Behavior and Human Performance, 31:145–172.

Kittur, A., Chi, E., Pendleton, B. A., Suh, B., and Mytkowicz, T. (2007). Power of
the few vs. wisdom of the crowd: Wikipedia and the rise of the bourgeoisie. In
Alt.CHI, 2007.

Kittur, A. and Kraut, R. E. (2008). Harnessing the wisdom of crowds in wikipedia:
Quality through coordination. In CSCW 2008: Proceedings of the ACM Conference
on Computer-Supported Cooperative Work, New York. ACM Press.

Kozlowski, S. W. J., Hully, S. M., Nason, E. R., and Smith, E. M. (1999). Developing
adaptive teams: A theory of compilation and performance across levels and time.
In IIgen, D. R. and Pulakos, E. D., editors, The changing nature of performance,
pages 240–292. Jossey-Bass Publishers, San Francisco.

Krikelas, J. (1983). Information seeking behaviour: Patterns and concepts. Drexel
Library Quarterly, 19(2):5–20.

Krishnamurthy, S. (2002). Cave or community: An empirical examination of 100
mature open source projects. First Monday, 7(6).

Kuznetsov, S. (2006). Motivations of contributors to Wikipedia. ACM SIGCAS
Computers and Society, 36(2).

BIBLIOGRAPHY 242

Lakhani, K. and von Hippel, E. (2003). How open source software works: “free”
user-to-user assistance. Research Policy, 32:923–943.

Lakhani, K. and Wolf, R. (2003). Why hackers do what they do: Understanding
motivation efforts in Free/F/OSS projects. Working Paper 4425-03, MIT Sloan
School of Management.

Langlois, R. N. (2002). Modularity in technology and organization. Journal of Eco-
nomic Behavior & Organization, 49(1):19–37.

Lessig, L. (2002). The Future of Ideas: The fate of the commons in a connected world.
Random House.

Lipnack, J. and Stamps, J. (1997). Virtual teams: Reaching across space, time and
organizations with technology. John Wiley and Sons, Inc, New York, NY.

Locke, E. A. (1996). Motivation through conscious goal setting. Applied and Preven-
tive Psychology, 5:117–124.

Locke, E. A. and Latham, G. P. (1990). A theory of goal setting and task performance.
Prentice-Hall, Englewood Cliffs, NJ.

Luthiger, B. (2004). Fun and software development (FASD) study provisional results.
Progress report, Universitat Zurich.

Malone, T. and Crowston, K. (1994). The interdisciplinary theory of coordination.
ACM Computing Surveys, 26(1):87–119.

Malone, T. W. (2004). The Future of Work: How the New Order of Business Will
Shape Your Organization, Your Management Style and Your Life. MIT Press.

March, J. G. and Simon, H. A. (1958). Organizations. Blackwell, Oxford, UK.

Marks, M. A., Mathieu, J. E., and Zaccaro, S. J. (2001). A temporally based frame-
work and taxonomy of team processes. Academy of Management Review, 26(3):356–
377.

Marvin, C. (1988). When Old Technologies Were New. Oxford University Press, New
York.

McGrath, J. (1984). Groups: Interaction and Performance. Prentice-Hall, Englewood
Cliffs, NJ.

McGrath, J. E. (1991). Time, interaction, and performance (TIP): A theory of groups.
Small Group Research, 22:147–174.

McGrath, J. E. and Tschan, F. (2004). Dynamics in groups and teams: Groups as
complex action systems. In Poole, M. S. and Van de Ven, A. H., editors, Handbook
of Organizational Change and Innovation. Oxford University Press, Oxford, UK.

BIBLIOGRAPHY 243

Michlmayr, M. (2003). Quality and the reliance on individuals in free software
projects. In Proceedings of the ICSE 3rd Workshop on Open Source.

Michlmayr, M. (2004). Managing volunteer activity in free software projects. In
Proceedings of the 2004 USENIX Annual Technical Conference, FREENIX Track,
pages 93–102, Boston, USA.

Michlmayr, M. (2005). Quality improvement in volunteer open source projects. Re-
search plan (shared for IntOSS consortium).

Miles, M. B. and Huberman, A. (1984). Qualitative Data Analysis: A Sourcebook of
New Methods. Sage, Beverly Hills, CA.

Mintzberg, H. (1979). The Structuring of Organizations. Prentice-Hall, Englewood
Cliffs, NJ.

Mockus, A., Fielding, R. T., and Herbsleb, J. D. (2002). Two case studies of open
source software development: Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3):309–346.

Nakakoji, K. and Yamamoto, Y. (2001). Taxonomy of open source software develop-
ment. In Proceedings of the ICSE 1st Workshop on Open Source.

Nov, O. (2007). What motivates Wikipedians?

Olson, J. S., Teasley, S., Covi, L., and Olson, G. M. (2002). The (currently) unique
advantages of collocated work. In Hinds, P. and Kiesler, S., editors, Distributed
Work, pages 113–135. MIT Press, Cambridge, MA.

Orlikowski, W. J. (1992). Learning from notes: organizational issues in group-
ware implementation. In CSCW ’92: Proceedings of the 1992 ACM conference
on Computer-supported cooperative work.

Orlikowski, W. J. and Barley, S. R. (2002). Technology and institutions: What can
research on information technology and research on organizations learn from each
other? MIS Quarterly, 25(2):145–165.

Orlikowski, W. J. and Iacono, C. S. (2001). Research commentary: Desperately
seeking the ’IT’ in IT research: A call to theorizing the it artifact. Information
Systems Research, 12(2):121–145.

Orlikowski, W. J. and Yates, J. (1994). Genre repertoire—the structuring of commu-
nicative practices in organizations. Administrative Science Quarterly, 39(4):541–
574.

Ortega, F., Gonzalez-Barahona, J. M., and Robles, G. (2008). On the inequality of
contributions to wikipedia. In Proceedings of the Proceedings of the 41st Annual
Hawaii international Conference on System Sciences.

BIBLIOGRAPHY 244

Parnas, D. L., Clements, P. C., and Weiss, D. M. (1981). The modular structure of
complex systems. IEEE Transactions on Software Engineering, 11(3):259–266.

Patton, M. Q. (2002). Qualitative research and evaluation methods. Sage, Thousand
Oaks, CA, 3rd edition.

Perlow, L., Gittell, J., and Katz, N. (2004). Contextualizing patterns of work
group interactions: Toward a nested theory of structuration. Organization Sci-
ence, 15(5):520–536.

Poole, M. and Roth, J. (1989). Decision development in small groups iv: A typology
of group decision paths. Human Communication Research, 15(3):323–356.

Porter, L. W. and Lawler, E. E. (1968). Managerial attitudes and performance. Irwin,
Homewood, IL.

Powell, A., Piccoli, G., and Ives, B. (2004). Virtual teams: A review of current
literature and directions for future research. Database for Advances in Information
Systems, 35(1):6.

Raymond, E. S. (1998). The Cathedral and the Bazaar. First Monday, 3(3).

Raymond, E. S. and Moen, R. (2001). How to ask questions the smart way. Webpage.

Rico, R. and Cohen, S. G. (2006). Effects of task interdependence and communication
technologies synchrony on performance in virtual teams. Journal of Managerial
Psychology, 20(3/4):261–274.

Robbins, J. E. (2002). Adopting OSS methods by adopting OSS tools. In Proceedings
of the ICSE 2nd Workshop on Open Source.

Robles, G. (2007). Research friendly: Community meets research. In International
Workshop on Public Data about Software Development.

Rosenberg, S. (2007). Dreaming in Code: Two Dozen Programmers, Three Years,
4,732 Bugs, and One Quest for Transcendent Software. Crown.

Rousseau, V., Aube, C., and Savoie, A. (2006). Teamwork Behaviors: A Review and
an Integration of Frameworks. Small Group Research, 37(5):540.

Ryan, R. M. and Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic
definitions and new directions. Contemporary Educational Psychology, 25:54–67.

Samson, D. and Daft, R. (2005). Management - Pacific Rim Second Edition. Thom-
son, Sydney, Australia.

Scacchi, W. (2004). Free/open source software development practices in the computer
game community. IEEE Software, 21(1):56–66.

BIBLIOGRAPHY 245

Schach, S. R., Jin, B., Wright, D. R., Heller, G. Z., and Offutt, A. J. (2003). De-
termining the distribution of maintenance categories: Survey versus measurement.
Empirical Software Engineering, 8(4):351–365.

Scheier, I. (1977). Staff nonsupport of volunteers: A new look at an old failure.
Voluntary Action Leadership, Fall.

Schoonhoven, C. B. (1981). Problems with contingency theory: Testing assump-
tions hidden within the language of contingency ’theory’. Administrative Science
Quarterly, 26(3):349–377.

Schroer, J. and Hertel, G. (2006). Wikipedia: Motivation for voluntary engagement
in an open web-based encyclopedia. In 8th International General Online Research
Conference (March 2006), Bielefeld, Germany.

Schweik, C. M. and English, R. (2007). Tragedy of the foss commons? investigating
the institutional designs of free/libre and open source software projects. First
Monday, 12(2).

Scialdone, M., Li, N., Howison, J., Heckman, R., and Crowston, K. (2008). Group
maintenance in technology-supported distributed teams. In Best Paper Proceedings
of Academy of Management Annual Meeting, Anaheim, CA.

Senyard, A. and Michlmayr, M. (2004). How to have a successful free software project.
In Proceedings of the 11th Asia-Pacific Software Engineering Conference, pages 84–
91, Busan, Korea. IEEE Computer Society.

Shea, G. and Guzzo, R. (1987). Group effectiveness: what really matters? Sloan
Management Review, 28(3):25–31.

Simon, H. (1957). A behavioral model of rational choice. In Models of Man, Social and
Rational: Mathematical Essays on Rational Human Behavior in a Social Setting.
New York: Wiley.

Simon, H. A. (1960). The New Science of Management Decision Making. Evanston,
New York.

Steers, R. M., Mowday, R. T., and Shapiro, D. L. (2004). The future of work moti-
vation theory. Academy of Management Review, 29(3):379–387.

Stewart, K. J., Ammeter, A. P., and Maruping, L. M. (2006). Impacts of license
choice and organizational sponsorship on user interest and development activity in
open source software projects. Information Systems Research, 17(2):126–144.

Surowiecki, J. (2005). The Wisdom of Crowds. Anchor.

Taggar, S. and Haines, III, V. Y. (2006). I need you, you need me: A model of
initiated task interdependence. Journal of Managerial Psychology, 21(3):211–230.

BIBLIOGRAPHY 246

Tapscott, D. and Williams, A. D. (2006). Wikinomics: How Mass Collaboration
Changes Everything. Portfolio Hardcover.

Thomas, E. (1957). Effects of facilitative role interdependence on group functioning.
Human Relations, 10:347–366.

Thompson, J. D. (1967). Organizations in Action: Social Science Bases of Adminis-
trative Theory. McGraw-Hill, New York.

Trist, E. L. and Bamforth, K. W. (1951). Social and psychological consequences of
the longwall method of coal-getting. Human Relations, 4(1):3–28.

Tschan, F. and von Cranach, M. (1996). Group task structure, processes, and out-
come. In West, M. A., editor, Handbook of work group psychology, pages 92–121.
John Wiley, Chichester, England.

Van de Ven, A. H., Delbecq, A. L., and Koenig, R. (1976). Determinants of coordi-
nation modes within organizations. American Sociological Review, 41(2):332–338.

Van Der Vegt, G., Emans, B., and Van De Vliert, E. (2000). Team members’ affective
responses to patterns of intragroup interdependence and job complexity. Journal
of Management, 26:633– 655.

von Hippel, E. (1990). Task partitioning: an innovation process variable. Research
Policy, 19(5):407–418.

von Hippel, E. and von Krogh, G. (2003). Open source software and the ‘private-
collective’ innovation model: Issues for organization science. Organization Science,
14(2):209–223.

von Krogh, G., Spaeth, S., and Lakhani, K. R. (2003). Community, joining, and
specialization in open source software innovation: a case study. Research Policy,
32(7):1217–1241.

Vroom, V. H. (1964). Work and Motivation. Wiley, New York, NY.

Wageman, R. (1995). Interdependence and group effectiveness. Administrative Sci-
ence Quarterly, 40(1):145–180.

Wageman, R. and Gordon, F. M. (2005). As the twig is bent: How group values shape
emergent task interdependence in groups. Organization Science, 16(6):687–700.

Warstaa, J. and Abrahamsson, P. (2003). Is open source software development es-
sentially an agile method? In Proceedings of the ICSE 3rd Workshop on Open
Source.

Williamson, O. E. (1981). The economics of organization: The transaction cost
approach. The American Journal of Sociology, 87(3):548–577.

BIBLIOGRAPHY 247

Winograd, T. and Flores, F. (1987). Understanding Computers and Cognition: A
New Foundation for Design. Addison-Wesley Professional.

Yamauchi, Y., Shinohara, T., and Ishida, T. (2000). Collaboration with lean media:
How open-source software succeeds. In Proceedings of Computer Support Collabo-
rative Work 2000 (CSCW 2000).

Ye, Y. and Kishida, K. (2003). Toward an understanding of the motivation of open
source software developers. In Proceedings of 2003 International Conference on
Software Engineering (ICSE), Portland, Oregon, USA.

Yin, R. (1994). Case study research: Design and methods (2nd ed.). Sage Publishing,
Beverly Hills, CA.

Zaheer, S., Albert, S., and Zaheer, A. (1999). Time scales and organizational theory.
Academy of Management Review, 24(4):725–741.

Biographical Data

James Howison defended his Ph.D. at the School of Information Studies at Syracuse University in

December 2008 and began a post-doctoral fellowship in the School of Computer Science at Carnegie

Mellon University in January 2009. His research focuses on the organization of distributed collabora-

tion, especially in Free and Open Source software projects. His publications include articles in IEEE

Computer, IEEE Transactions on Professional Communications, Software Process Improvement and

Practice as well as Knowledge, Technology and Policy. He has presented at the International Con-

ferences for Information Systems (ICIS) and Software Engineering (ICSE). He was selected as a

participant at the ICIS doctoral consortium in 2007 and the first NSF workshop on the Science of

Socio-technical Systems in 2008. He has been invited to speak at O’Reilly’s eTech, OSCON and

FOOcamp conferences. Updated details can be found at http://james.howison.name.

Born in Scotland, James grew up in Australia, earning his undergraduate Economics degree from

the University of Sydney and pursued masters study in Software Engineering at the University of

New South Wales before transferring to the Syracuse Ph.D. in Information Science and Technology in

2002. Prior to returning to graduate school James worked as an information systems implementation

consultant with KPMG management consultants and as a consultant with Control Risks Group,

an international crisis management and corporate investigations consultancy. In 2005 James was

chief scientist for a prize winning business plan competition team, organized by the top-ranked

Entrepreneurship program at Syracuse.

James is a keen golfer and sailor, competing in national and international championships in the

Etchells and Sydney 38 classes as well as over 1500 n.m. offshore experience. He is a keen supporter

of Rugby and Cricket but is always open to American attempts to convince him of the value of

North American sports.

248

http://james.howison.name

	Contents
	Introduction
	Background and Research Questions
	Literature Review I

	Research
	Discovery: BibDesk Participant Observation
	Literature Review II
	Replication: Fire & Gaim Archive Study
	Literature Review III
	Formalization: An Explanatory Model

	Conclusions
	Discussion
	Conclusion

	Bibliography And Appendices
	Details of Illustrative Tasks
	Bibliography
	Biographical Data

