
Scientific Software Production:
Incentives and Collaboration

James Howison
School of Computer Science
Carnegie Mellon University

jhowison@cs.cmu.edu

James D. Herbsleb
School of Computer Science
Carnegie Mellon University

jdh@cs.cmu.edu

ABSTRACT
Software plays an increasingly critical role in science, in-
cluding data analysis, simulations, and managing workflows.
Unlike other technologies supporting science, software can
be copied and distributed at essentially no cost, potentially
opening the door to unprecedented levels of sharing and
collaborative innovation. Yet we do not have a clear pic-
ture of how software development for science fits into the
day-to-day practice of science, or how well the methods
and incentives of its production facilitate realization ofthis
potential. We report the results of a multiple-case study of
software development in three fields: high energy physics,
structural biology, and microbiology. In each case, we
identify a typical publication, and use qualitative methods
to explore the production of the software used in the science
represented by the publication. We identify several different
production systems, characterized primarily by differences
in incentive structures. We identify ways in which incentives
are matched and mismatched with the needs of the science
fields, especially with respect to collaboration.

ACM Classification Keywords
H.5.3 Group and Organization Interfaces: Computer-support-
ed cooperative work

General Terms
Human Factors, Management

INTRODUCTION
Software plays an increasingly critical role in science, in-
cluding data analysis, simulations, and managing workflows.
Unlike other technologies supporting science, software can
be copied and distributed at essentially no cost, potentially
opening the door to unprecedented levels of sharing and col-
laborative innovation. The production and maintenance of
scientific software has been identified as an area of concern
for science policy makers [20].

While science is a collaborative field, both in terms of spe-
cific projects and indirectly over time as research projects

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSCW 2011, March 19–23, 2011, Hangzhou, China.
Copyright 2011 ACM 978-1-4503-0556-3/11/03...$10.00.

build on each other, it is not selfless. Scientific software
work takes place in the context of competition amongst
scientists for recognition and attention that focuses on publi-
cations and citations. This environment makes the incentives
and rewards for software work quite different than that found
in other domains. Given this we do not have a clear picture
of how software development for science fits into the day-to-
day practice of science, or how well the methods and incen-
tives of its production facilitate realization of the potential of
software in science.

BACKGROUND
Software work in science has received limited research at-
tention, despite its growing importance. What work there is
has been focused in two areas: Collaboratories and Software
Engineering.

The literature on collaboratories has focused on software
as an infrastructural support for collaboratory science, such
as in the UARC scientific collaboration Upper Atmospheric
Research Collaboratory [5, 12]. A common finding is a
division of labor between scientist and computer scientists
or software developers creating a tension between research
goals and software development goals [10, 13, 4, 7].

In Software Engineering “a chasm opened between the sci-
entific computing community and the software engineering
community ... the bulk of the software engineering com-
munity’s research is on anything but scientific-application
software” [8]. When SE has approached scientific software
it has focused on the idea that SE methodologies can help
assess, test and improve software correctness [6, 2]. The rec-
ommendations in this work often exhort scientists to adopt
imported practices, yet they do so without understanding
what underlies and thus causes the situation they seek to fix.

What is needed, as we see it, is to understand scientific
software as an independent production system, by which we
mean examining the incentives underlying its production and
considering their impact on the practices and the software
produced. Knowing what drives and constrains current prac-
tices forms the basis for developing interventions which can
improve the situation.

There are two examples of work towards this end. Sanders
et al. provide a survey of scientific software that specifi-
cally considers the organization of its production, such as
whether it was produced by commercial interests or open

source projects, albeit as one source of correctness risk [14].
Segal and colleagues approach scientific computing through
the lens of end-user software development, a branch of
SE research that recognizes that the practice of software
development regularly occurs outside the traditional roleof
professional software developers [16, 17, 18]. They identify
two situations: “when the software is intended for use either
by the developer herself/himself or by closely co-located
colleagues, for example, people working in the same labora-
tory” which they contrast with software developed “within a
closely co-located group but intended for the wider scientific
community of which the developers form a part” [17].

While these distinctions in practice and intended use are im-
portant we believe that they can be improved through a focus
on the incentives faced by scientists producing software, just
as efforts have focused on this in open source software [3].
Further we believe that this approach is most likely to yield
actionable knowledge because understanding incentives and
motivations gives leverage for improvement.

THREE CASES
We therefore began this research with a set of sensitizing
concepts: incentives, collaborative practices and software
correctness in the scientific context. As we conducted these
cases we refined our questions to three that form a conve-
nient way to present our results.

1. What software is involved in this scientific field?
2. Who created or maintains this software?
3. What incentives drive that creation or maintenance work?

To choose our cases we used a sampling across scientific
scales, one very large focused collaboration (Case 1) through
lab-based science (Case 3), with a third falling in-between
as separate, sometimes competing, labs sharing a software
distribution (Case 2). Cases 1 and 2 were identified through
introductions from the Open Science Grid and Case 3 was
identified through institutional contacts.

Since each scientific field is very large we needed to ground
our cases. This we did by identifying specific published pa-
pers which we refer to asfocal papers. Since a published pa-
per is the primary scientific unit of work and contribution it
is an appropriate route into these fields. While we confirmed
with our interviewees that our focal papers represented a
“typical” workflow in their work and field, we present these
as individual cases of software heavy science in each field.
This choice, of course, allows us to provide rich detail at
the risk of representativeness; we judged this tradeoff to be
appropriate at this stage of inquiry.

For each specific publication we interviewed the authors
most associated with the software work of the paper. These
interviews were semi-structured, based on a protocol follow-
ing our research questions. They were conducted on the
phone, recorded and transcribed by the researchers. Fol-
lowing the interviews we wrote qualitative memos and drew
maps/workflows of the software. These were used for dis-
cussion amongst the researchers, returns to the literature

and checking with our interviewees. For each focal paper
we sought our next interview candidates from the players
mentioned in an effort to cover our unit of analysis: the
software used towards the specific papers.

These interviews provide direct answers to the first question,
allowing us to identify the software involved. This includes
software written or directly used by the authors in the course
of the research leading to the publication of the focal pa-
per. Yet the involvement of software does not stop there.
We probed beyond the surface, seeking additional software
relevant to these publications. As we will see this revealed
software involved in, for example, creating datasets used by
the authors or in performing analyses or simulations needed
for the work but performed by others.

For each of the software artifacts identified we pushed out-
wards. We first sought to understand how the authors came
to have the software they used, then we sought to understand
the origins of all the software involved, arranging interviews
with some package authors. These interviews were com-
plimented by more general interviews with scientists and
software practitioners in the field (some conducted prior to
identifying our specific paper, some afterwards). In total we
undertook 28 hour-long interviews. In this way we build a
picture of the scientific software ecosystem involved in these
specific pieces of science.

Following the three cases we provide an extended Discus-
sion which builds a taxonomy of software production sys-
tems in terms of their incentives and practices.

CASE 1: LARGE PHYSICS COLLABORATIONS
The first case involves science in large common-goal col-
laborations. We have conducted interviews with participants
in a number of collaborations in physics, including STAR,
ICECube, CMS, ATLAS and LIGO. These collaborations
are large, comprised of hundreds of scientists all focused on
a relatively narrow, shared goal [9, 1]. The collaborations
are literally centered on large scientific instruments, from
particle accelerators to cubic kilometer instrumented blocks
of ice in the Antarctic which generate and measure physical
conditions of interest. Their method uses simulations of
theoretically understood processes that are subtracted from
the massive collected data to isolate and characterize an
extremely small number of interesting events. These col-
laborations typically have substantial central funding (often
through multiple, overlapping grants over long time-frames)
complemented by a range of smaller grants to member labs
focused on particular aspects of the projects.

Focal publication Our focal paper for this case was pro-
duced by the STAR high-energy physics collaboration. It
characterizes the Upsilon particle, including statistical bounds
for its energy range. This paper was identified through
an interview with the software coordinator for the STAR
collaboration.

The first thing that strikes one about the paper is that it
includes the full list of collaboration members (including
central IT staff) as authors (taking up the first two pages) and

does not indicate who was particularly responsible for this
analysis. This is normal practice in these collaborations [1].
The software coordinator was able to share an internal tech
note which describes the analysis in detail intended to be
sufficient for replication inside the collaboration. This lists
six scientists as “the primary authors of this paper.” The
software coordinator identified the two listed first as primar-
ily responsible for the software portions of the paper and
we interviewed them. The tech note provides details of the
software most closely associated with the analysis and this
formed the basis for our interview with the authors.

Identifying software involved
The instrument run creates raw data, which is “pre-processed”
from electrical signals into initial descriptions of “events” in
the detector. The analysis begins with this data and works
through 25 scripts known by the authors as “the analysis
macros.” The first set of scripts, called “Makers,” accesses
a particular subset of a particular run of “pre-processsed
data” together with a specific version of a software library
called ROOT4STAR, ensuring that it is synchronized with
the dataset. The “Data” set of scripts perform the physics
analysis itself. The remaining scripts assess “systematic
uncertainties” in the analysis, using a specific simulation
practice called “embedding.” Producing these simulations
involve more software.

Thus the full workflow for the paper draws on four kinds
of software: analysis macros, the ROOT4STAR library,
the software involved in data production and the software
involved in simulation production. For each of these we
now consider our three questions, addressing its creation and
incentives.

Analysis scriptsThe authors of the analysis scripts were two
younger scientists, one a post-doc and one a senior PhD stu-
dent. They worked in different labs at different institutions.
Each had some background in Computer Science consisting
of 2 or 3 years in an undergraduate CS major before focusing
on Physics through graduate school.

One scientist was responsible for the Makers and the Data
scripts and the other for the Embedding scripts, but they
described being in regular touch through email and phone.
Each scientist worked primarily on his or her laptop, proto-
typing their scripts on small sub-sections of the data, before
running them in user accounts on “STAR Cluster machines.”
They shared their code through directories on this system
and did not use source control, considering it unnecessary
for small groups during the preparation of the analysis. They
did not write tests or use any particular software develop-
ment methodology. Their work unfolded in the context
of weekly meetings of their physics analysis group. The
analysis working group includes multiple labs and people
experienced with the instrument and similar analyses.

Once the group has decided to move to publication the
collaboration organizes a “godparent” committee to review
the paper. At this point the analysis scripts are moved into
a shared CVS and tagged; a policy insisted upon by the

central software coordinator. The review undertaken by this
committee focuses on the physics findings, but also assesses
the completeness of the tech note. It includes a scientist
member specifically responsible for assessing the software.
That person runs portions of the analysis to confirm that
they get the same results. In the case of this paper the only
issues uncovered in this process was a script missing from
the central CVS.

The incentives to write this software were clear and direct:
without these scripts there would be no analysis and thus
no paper. In the words of a member of the central IT staff
of a different collaboration, scripts like these are “all about
getting the plots,” where the plots refer to the results forming
the central findings of the paper.

Our informants believed that their greater than average tech-
nology skills did provide some comparative advantage within
the collaboration. Nonetheless they were clear that they
expected to be judged on physics results obtained, not their
software skills. They argued that writing code was some-
thing that was intensely important during the early stage of
one’s career, but that career progression would lead them
away from writing software. They speculated that focusing
on software contributions not directly linked to specific re-
sults would lead to a move out of the main career track; they
were unsure how that would work. They indicated that their
career progression would rely on their reputation within the
collaboration, especially on letters written by their PIs.They
expected these letters to mention their software work only in
the context of their scientific competence.

Our informants told us that they “of course” expect their
code to be open to review and for the use of anyone inter-
ested, within the collaboration. The issue of sharing outside
the collaboration did not arise, in their minds, since the
code was so specialized. They did not expect to support
others using their software since they believed that it was
too specialized and in any case the code’s availability and
documentation through the Tech Note ought to be sufficient.
From time to time they had sought code from others in the
collaboration, mainly as a demonstration of portions of the
analysis or plot generation, and had found everyone basi-
cally forthcoming, although some were quicker and more
helpful than others.

ROOT4STAR Library The ROOT4STAR library is funda-
mental to the STAR collaboration. It is a specialization of a
library called ROOT that is created outside of STAR and is
widely used in the physics community. ROOT4STAR deals
with data input/output issues, optimized implementationsof
algorithms needed through the collaboration and plotting
tools.

ROOT4STAR was constructed with two main contributions.
The first are from “5-7” software professionals (often with
physics backgrounds) working in a “central IT group.” The
second are collaboration members, often students or post-
docs, assigned from member labs to provide “service work.”
This “service work” is a tradition in physics collaborations [1].

Originally it primarily referred to “shifts” monitoring the
equipment but now increasingly includes software work.

These libraries are a substantial achievement, providing a
platform for the many analyses undertaken throughout the
collaboration. As such it is software that is written to be
used over and over again by what are essentially End User
Programmers. It is subject to much more formal software
engineering practices, such as tests and line by line code
reviews. It is also documented for use in a way very different
to the description of the analysis scripts in the tech note
discussed above. Despite its importance ROOT4STAR is
not mentioned or cited in our focal paper, an example of
“invisible infrastructure work” [19].

Data and Simulation ProductionSoftware is involved two
aspects of the analysis: the production of the initial dataset
and the production of simulation data used to demonstrate
the sensitivity of the analysis.

Data production refers to the shared processing of raw in-
strument readings into annotated datasets describing the first-
level physical phenomenon in terms of events, for example
particles and their energies and tracks. This can be highly
computationally expensive, usually drawing on specialized
clusters and on federated Grid computing resources. This
work is undertaken through service work from collabora-
tion members with substantial contribution from central IT.
While the software involved in this work was not cited in the
paper the Open Science Grid is acknowledged.

Our focal paper used a particular simulation technique called
“embedding.” Here a simulated target signal is embedded in
the real background from the data and the analysis scripts
run. This demonstrates and measures the ability of the
analysis to identify the candidate signal in the real context
of the instrument. The collaboration runs a central facility
to provide embedding simulations for the publications of the
collaboration. This is staffed in part by central IT staff but
also with lab members performing “service work.”

In the case of our focal paper the embedding simulation
called for something new and specific, beyond the existing
code of the central simulation production team. One of the
two scientists writing the analysis scripts worked with the
simulation team to build new code for the embedding simu-
lation. The interview made it clear that this assistance was
important to removing a bottleneck and getting their analysis
to a publishable stage. This code was stored separately from
the analysis scripts in the central simulation team’s CVS
because it was viewed as likely to be reused in the future.
The embedding code drew on two packages produced by
academics outside the collaboration: PYTHIA and GEANT.
While the simulation code, as with ROOT4STAR and the
data production code was not directly cited, these external
packages were.

“Service work” offers an opportunity to contribute to the col-
laboration in important ways. It is provided by labs as a con-
dition of membership, motivated by access to the data and

inclusion on all authorship lists. It is also motivated because
some additional grant funding is available for software work
in the collaboration. One central administrator spoke of a
concern with this situation saying that members sometimes
“promise software but hope for science”—that the resources
intended for software are cross-subsidizing work viewed as
more directly identified with the collaboration’s scientific
mission.

CASE 2: STRUCTURAL BIOLOGY
Our second case is Structural Biology, a science concerned
with the identification and characterization of molecules.
There are many such molecules yet to be described, some of
which prove very valuable in applied settings, especially for
drug development. We interviewed five scientists and one
information technologist working in this field, which is made
up of many separate labs competing for primacy in analyzing
the structure of their chosen molecule. This primary unit is
reflected in the author lists of publications, typically between
three and six authors. The lab head is listed last and the
first authors are those primarily responsible for the specific
analysis.

Focal PublicationOur focal paper contributes to the “ratio-
nal design” of drugs to counter botulism and was recently
published in PLOSone. The study reveals the physical struc-
ture of peptides which form complexes with the Botulism
toxin which provides crucial input to the process of devel-
oping drugs to block the disease agent. We interviewed the
lab PI and the first author of the paper who confirmed this as
“typical” of their work.

The work of describing the structure divides into two phases:
a data collection phase primarily composed of wet lab work
and a dry phase primarily composed of analysis supported by
software. The wet lab phase involves isolating the molecules
of interest, purifying them and crystalizing them. These
crystals are then subjected to X-Ray Crystallography at a
facility known as a Synchotron. This process was simpli-
fied in a description by one informant as bombarding the
crystalized molecule and producing a set of x-ray shadows,
followed by a software supported combinatorial search for
known components of molecules whose structure and con-
figuration might throw parts of this shadow. Our informant
estimated the time spent on the project as two months, with
70% of time spent on wet work and 30% of time on the
software-assisted analysis.

Identifying Software Involved
The first task requires obtaining the raw data from the Syn-
chotron and converting it to a set of reflections and coordi-
nate data. This involved two pieces of software (Scalepack
and Denzo) available in a package called HKL-2000. The
next step takes these inputs and produces an initial structure
that could have caused the observed xray shadows. The
author used a program called Phaser, included in a package
called CCP4. This initial candidate structure is then inter-
actively refined using a combination of visualization and fit
statistics. The author used programs called PHENIX and
COOT and produced a fit summary using a program called
MolProbity. Finally the paper includes many illustrations

of the structures as figures; these were produced with the
PyMol package. Each step in this workflow is run manually.
The final structure is, as a requirement of publication in
Structural Biology, uploaded to the Protein Databank. The
computing was all carried out on the lab cluster, with the
exception of MolProbity which is available as a Web Ser-
vice. The software was installed and maintained outside the
specific lab, through an organization called SBGrid.

SBGrid SBGrid is a “small IT organization funded exclu-
sively by our [140+] member laboratories” based at Harvard
Medical School. It provides two services. The primary
service is a distribution of software packages relevant to
Structural Biology (the other service, not used for our focal
paper, is access to the Open Science Grid). Members pay
a fee (a few thousand dollars) typically funded from NIH
grant money, but waived for a small number of labs which
contribute a package to the distribution. The distribution
was started by the SBGrid PI in 1999 to synchronize the
software at multiple labs at which he was working. The PI
is now a research-focused Associate Professor and the soft-
ware distribution is managed by one full-time information
technologist (“philosopher-cum-software-engineer”) whom
we interviewed. His full-time salary is paid from fees from
the member labs.

The SBGrid software distribution works in a way very sim-
ilar to Linux software distributions, such as Debian or Red-
Hat. The distribution bridges between software authors
and users, providing pre-packaged, pre-compiled software
applications arranged for maximum compatibility. The dis-
tribution also provides an updating service which pushes
new versions out to member labs’ computer systems. Further
the coordinator monitors the projects producing each of the
packages for relevant updates or bug-fixes. Finally SBGrid
provides first level support for packages and helps members
contact project developers for further support.

The author of our focal paper indicated that SBGrid saved a
significant amount of time and gave him confidence that the
packages were up to date and likely to work well together.
Nonetheless SBGrid was not acknowledged or cited in the
paper and the authors of our focal paper did not consider
that necessary. SBGrid, in fact, does not provide a citation
that could be used, nor request acknowledgement. They do
maintain a list of member labs but do not maintain a list of
papers that use their distribution.

CASE 3: MICRO-BIOLOGY THROUGH BIOINFORMATICS
Our third case study is in the field of microbial biology
using bioinformatic techniques. The broad challenges in this
field are to identify organisms, understand the relationships
between organism’s DNA and functions and to study the
evolution of these organisms. These functions may find
commercially important applications, such as in processing
of plant-matter into bio-fuels. As with Structural Biology,
this field is also organized into small labs with the lab head
as the PI listed last and the primary author(s) listed first on
publications.

Focal Publication We interviewed an author of a bioin-

formatics paper recently published in the journal Science.
The paper focused on Nitrogen fixation functions of a micro
ecosystem in which leaf-cutter ants cultivate fungal crops.
Our informant was familiar with the full analysis and was
able to report on packages used in that paper and in papers
he was working on with a similar workflow.

The analysis begins with data collection to obtain relevant
organisms from interesting systems. In this case this means
field work in Argentina, Costa Rica and Panama. The organ-
isms are cultured, generating sufficient DNA for sequencing
at specialized centers, often supported by science funding
agencies. The first software-dependent step is interpreting
raw sequencing data as strings of DNA bases (A,C,T,G). The
remaining steps all occur through comparisons between that
sequence and public databases of previously sequenced and
annotated DNA. Organisms are identified through a particu-
lar locus called 16S. Their full sequences are then compared
to DNA databases which contain annotations regarding func-
tions associated with different loci which, combined with
knowledge of the researcher’s particular system, enables
reasoning about the likely functions of the organism. Finally
evolutionary trees are constructed.

Identifying software involved
Identifying the software used for this publication was rela-
tively simple. During the interview we were referred to the
Supporting Online Materials appendix to the paper. While
the paper itself is 3.5 pages long, the appendix is 35 pages
long. The first 6 pages are Materials and Methods, 12 pages
of ”Supporting Text,” 17 pages of detailed data and 2 pages
of references. The Materials and Methods section takes care
to identify each software package used, using different kinds
of citations which we discuss below.

Interpreting the raw sequence data was done with the Se-
quencher package, 16S identification with the ARB and
Greengenes package, full sequence alignment with the mus-
cle package and the NCBI BLAST webservice and phyllo-
gentic trees constructed using the MrBayes package. Be-
yond these packages, our informant also described a series of
“power-user” scripts he wrote that linked together packages
like these in similar papers.

SequencherThe sequencing in this case occurred via a chro-
matagraph, which exploits differing rates of fluorescence
between the four components of DNA. The raw flourescene
data must be interpreted in a software-dependant process.
This software comes in two forms: either interactive, used
for short sequences (such as 16S) or fully automated for
whole genome sequencing.

The interactive software used in this lab is called Sequencher,
provided by a specialized company (Gene Codes Corpora-
tion). We were not able to interview its creator, but know
something of its background from media coverage. Its
author, and now CEO of the company, was originally trained
in music and psycholinguistics. He formed the company in
1988, releasing the Sequencher package in 1991. In 2001
the company was asked to help with the identification of the

remains of those killed at the World Trade Centre through
shotgun DNA sequencing (separating DNA from multiple
sources) and the firm now markets “Forensic DNS analysis
software” in addition to Sequencher.

The incentives for producing this software are straightfor-
ward: it is a profit centre for the firm. Sequencher is a
fully commercial package; it must be paid for both academic
and commercial use and license management includes key
servers and dongles. We believe that the software is written
and maintained in house at the firm’s Ann Arbor Michigan
office by employed software engineers. The software is cited
in text with just the name of the firm; it does not appear in
the References listing. In this way it is treated in a manner
most similar to providers of hardware such as pipettes and
chemicals.

Newbler An example of automated software for whole gene
construction is Newbler, which is written by a “next gen-
eration” sequencing machine company (454 Life Sciences).
The software runs directly on 454 Sequencing machines,
but is also made freely available to researchers, including
source code for advanced configuration. Our focal paper
does not name the software directly but describes the equip-
ment, naming the firm and citing a Nature paper. There are
45 authors for this paper, employees of 454 Life Sciences
and academic scientists and aims to “describe a scalable,
highly parallel sequencing system with raw throughput sig-
nificantly greater than that of state-of-the-art capillaryelec-
trophoresis instruments.” The incentives for producing and
maintaining this software are clearly linked to the sale of
the 454 machines; the software is essentially useless without
data derived from these machines. The Nature publication is
likely of great value to those listed with academic connec-
tions or aspirations.

Greengenes and ARBGreengenes is both a specialized
database for 16S sequences and a specialized web service for
organism identification. Both the database and the software
are produced, maintained and made available as a service
by the Lawrence Berkeley National Laboratory. The service
is freely available for all users, including commercial use.
Our focal paper provides a citation in the reference list to
the Applied Environmental Microbiology journal; the home
page for the software has “Citation” as a top-level item and
lists this publication first. The homepage has a short “Those
citing Greengenes section” which lists only three papers; our
informant indicated that it was much more widely used than
this and their page was very out of date.

ARB is a GUI client focused on 16S identification tools. It
is produced, maintained and made available by two German
academic institutions. The paper provides a citation to a pub-
lication titled, “ARB: a software environment for sequence
data” in Nucleic Acids Research and all authors are associ-
ated with the two academic institutions. The download page
states that “Use is permitted for non-profit purposes” but
does not contain clear conditions or purchase information
for commercial use.

BLAST Webservice The final three steps compare the se-
quences with known sequences by comparing against public
databases. This process involves an algorithm known as
BLAST, in the words of our informant, “BLAST is the most
important and most useful and most used piece of software
in biology.” This algorithm finds appropriate matches in the
strings of DNA sequences. The algorithm itself is imple-
mented in many packages, including ARB and Greengenes.
The publication describing BLAST was the most cited paper
of the 1990s in all of biology [15].

The National Centre for Biotechnology Information, funded
by NIH, provides a Web Service version of BLAST which
accesses the US Genbank as well as downloads of a canon-
ical implementation of the BLAST algorithm. The NCBI
maintains and provides BLAST as a “top-level” service along
with the PubMed library. We have not interviewed the
maintainers of the BLAST web-service, but our informant
indicated that he believed the BLAST software and web-
service to be maintained by professional software engineers
under the guidance of scientists employed by NCBI.

Muscle For long sequence alignment they used a package
called MUSCLE. In the focal paper this is cited with an
academic citation to a single authored article published in
Nucleic Acids Research. We interviewed the author of the
Muscle package and the paper. This package is relatively
well-known; the author points to over 10,000 citations to the
two publications describing the package. However, it is not
as widely used as its “slick GUI” competitor ClustalW.

The author describes himself as an “unemployed gentleman
scholar,” a phase best clarified by a short biography. He
earned a Physics PhD, beginning a postdoc but deciding that
he was a better “software person” than he was a Physcist. In
the early 1990s he began a voicemail technology company
which he sold to Intel in 1999. The proceeds from this
sale have supported him through until now. Following the
sale he was “looking for interesting problems” and attended
some biology lectures at nearby UC Berkeley where he came
to the realization that, in his words, “biology == strcmp()”
[the C string comparison function name]. He worked with
a professor over a summer and produced the forerunner of
Muscle, releasing the package itself a short time later. The
package is released as public domain, which he believes to
be more appropriate than open source licenses.

He is now well published in this area, on the editorial board
of relevant conferences and is one of a handful of contribu-
tors he refers to as “algorithm people,” distinguishing them
from biologists. Recently he has produced an algorithm
he describes as 500 times as fast and good as BLAST for
alignment of very long sequences. This he now releases
under a mixed license, closed source but free for academics
and available for a fee to commercial users. The use of such
a hybrid setup is new for him.

He characterized the environment for the production of these
tools as highly individualized and competitive. He does
not build on other tools in his domain, nor does he work

to push his contributions into broader packages. He argues
that this enables him to be unconstrained by architectures
and existing code and because it promotes code portability
(by not requiring libraries etc). He considered it obvious
that algorithm writers would not collaborate. Pushed, he
offered two reasons for this. The first was that there was
little credit to be had in being seen to incrementally improve
another’s package, and any contributions—even substantial
re-writes—would accrue citations to the original author’s
papers, even if he “published on” the changes. The second
was that he did not wish to be at the mercy of members of
other teams in decisions about what to include in packages;
this would not only be slow and involve substantial politics
but would be inappropriate given the competitive nature of
this field.

Private “power-user” scripts Our Structural Biology in-
formant described himself as a power-user meaning he pre-
ferred speed and accuracy (cli) over ease of use (GUI). It also
means that he is comfortable working with independent tools
rather than integrated software suites, which allows him to
choose the individual tool most suited to a particular task.To
make these tools work together our informant writes scripts
which contain configuration settings, convert to appropriate
data formats and execute other tools. These personal scripts
allow our informant to orchestrate these tools for multiple
different analyses. Scripts such as these were not mentioned
at all in the body of the paper or the Methods and Materials
section. They do, however, appear to form a type of com-
parative advantage for our informant, who related being able
to perform—in a weekend—preliminary analyses which had
been out of reach of his lab prior to his arrival.

Our informant held it as axiomatic that a paper, in the meth-
ods and materials section, should provide sufficient detail
for its replication. However, he considered it only a limited
responsibility to assist anyone attempting such a replication;
they must “do their homework.” He did not consider it likely
or appropriate for readers, or even reviewers, to seek access
to his personal scripts. He considered these scripts to be
quite different from other types of software. If he had written
a novel tool embodying a non-intuitive technique and used it
in a paper, he would feel responsible for releasing that.

DISCUSSION
The three cases above allow us to abstract a set of production
systems through which software used in science is created,
maintained and shared. These systems are primarily differ-
entiated by the rewards available and which act as incentives
to motivate activity. Each system has associated with it a set
of software engineering practices.

The link between practices and the incentives that motivate
them can be in a variety of configurations. Moreover these
configurations have strong effects on the production of soft-
ware in science. In some circumstances, we will argue, these
can be out of alignment and can cause some of the sub-
optimal situations for the production of software for science
described in [20].

Software is a secondary player in the world of scientific

Research PublicationResources Reputation

Citations

Services

Figure 1. An archetypal simplification of the scientific reputation
economy

work, which is dominated by a reputation economy based
on substantive scientific publications. Figure1 attempts to
illustrate a much simplified archetypal scientific production
system. Research realized in publications is the core activity
of scientists [11]. Research, of course, requires resources,
realized through salaries and, especially, grant funding.Un-
like commercial production the core activities do not directly
result in the resources, since publications are given away
for free. Obtaining resources, then, is indirect through
reputation, and the path from publication to reputation is
direct and quick. If the publications are useful to other
researchers, then the publication receives citations, boosting
the reputation of the authors. Publications do not need to be
maintained as a separately motivated activity. Providers of
essential services and equipment, from the perspective of the
research economy, stay very much in the background, per-
haps rising to being named in the acknowledgement section,
or in the case of scientific equipment suppliers, their prod-
uct names perhaps mentioned in the methods and materials
appendix.

Software as Supporting Service
Some scientific software falls comfortably into the support-
ing service category. This software earns its keep essentially
outside the reputation economy of science. In our cases
we saw three different types of this kind of software. The
first is entirely commercial production, including packages
such as Mathematica or SAS and, from Case 3, Sequencher.
The second type was SBGrid from Case 2, where useful
software work is funded as a service by membership fees
paid by contribution or from grant money. The third covers
the software professionals employed by large collaborations
seen in Physics (“central IT”), rather than “service work”
(which is considered below).

Software produced as a support service is distinguished be-
cause they do not typically receive mention in academic
reference lists, either because they do not publish academic
papers or authors do not perceive them as requiring citation.
This was the case in our papers for Sequencher, SBGrid and
the ROOT4STAR framework.

Software for academic credit
The second major software production system identified in
this paper is unique to science: academic credit as incentive.

Research
Topical

Publication
Resources Reputation

Software
Software
Publication

Software
Releases

Maintenance
Improvement

Software
Support

Feedback Link

Topical
Citations

Use

Software
Citations

Figure 2. A depiction of the reputation incentives in a mixedscience
and software academic practice

While academic credit shares with open source motivations
the idea of reputation [3], it is unique due to the importance
of publications in that process. This breaks down into two
types: the first is software that is indirectly rewarded with
academic credit since it facilitates science publications, the
second is software released for credit on its own which
breaks into two types. The first is building a parallel topical
and software academic practice. The second is for a field to
recognize software publications as scientific publications in
their own subfield.

Incidental software Some software is written purely to
facilitate research. Examples from our cases include the
analysis scripts from Case 1 and the power-user scripts
from Case 3. Their production and motivation is relatively
unproblematic: they are useful because they facilitate a
specific piece of research and worked on and adapted when
(and if) another specific piece of research calls for it. As with
other end-user software this type of software is typically
typically written by individuals and not made available for
others to use, at least not in any formal or on-going way.
It might be archived and provided to scientists interested
in that paper on request, but without the expectation that
the software will require on-going maintenance work by
academics.

A parallel software practice Figure2 shows the situation
facing many scientists who release software for others to use.
The top of this figure shows the same main feedback loop as
Figure1: a flow from resources, to research, to publication.
Here the publication is referred to astopical indicating that
it addresses a research question in the scientists field. As
above there is a direct link from publication to reputation
and, over time, citations which increase reputation.

The bottom part of the figure shows what our interview
subjects referred to as “publishing on the software” de-
scribing the software produced in the course of research
in a separate software publication. Such publications also
directly result in reputation, although it is perhaps a lesser
or different form of reputation. At worst it could be viewed

as evidence of distraction from the scientist’s main line of
work. Nonetheless whatever reputation is earned form the
publication is direct.

Earning citations for software, however, is more circuitous.
Unlike topical scientific publications the software publica-
tion is rarely useful by itself; it is generally the softwarethat
is useful to other scientists. The use of that software package
by others in the future garners citations to the software
publication. In this figure this link is marked with a dashed
line to indicate that this linkage is more uncertain than
regular publications. This is because the ethical requirement
for citation is less well established; not all users of scientific
software view it is required to cite the software, and not
all software packages make a convenient citation available.
We believe that it is possible that this results from authors
viewing the software as a support service, as in Figure2 and
assuming that it is rewarded outside the reputation economy.

Making software useful for others is more complicated than
with topical publications or even dataset publications. Soft-
ware, even after being “published on,” must be released for
others’ use. Such sharing is costly. Effort must be made to
make the package generally useful and secure for release; in
Case 1 our informants told us that an open source require-
ment for internal collaboration code would require costly
security audits. Moreover, software requires maintenance
effort if it is to remain useful in a constantly changing in-
formation technology environment. This would include, for
example, ensuring it continues to work with newer versions
of libraries that it uses, that it is capable of working with
newer data formats and so on. Such maintenance is not
going to be sufficient for a new software publication, but
is necessary if the software is going to continue to provide
reputation payoffs. Finally, the authors may find that they
have to provide support to users. Software publications
do not help much, since they are quite different from user
manuals. They typically do not comprehensively codify the
knowledge required to garner further use and further cita-
tions in the future. A software release thus carries significant
costs, but is likely necessary to garner citations and draw
reputation from an active userbase.

In a very small number of cases, illustrated by BLAST
above, the software might become so important that these
responsibilities of maintenance and support are taken from
the author’s hands and become a responsibility of a software
professional, funded directly through science funding bod-
ies.

In this way a dual science and software practice is a complex
and questionable proposition for working scientists. Evenif
the software is created in a way that is required for their topi-
cal publications (and thus its creation is no extra effort) if the
scientist seeks to build independent scientific reputationfor
their software the path is complex and the additional effort
substantial. This additional effort takes time away from that
which could be invested in topical work where the payoff is
more clear. Finally there is the possibility that a scientific
software practice enhances topical scientific competitors’

abilities in a way that reduces the comparative advantage of
the software’s author, further decreasing their ability toearn
topical reputation. In a reputation economy where topical
publications are king, this illustration makes the difficulties
of scientific software clear. With this incentive structure, it
seems highly likely that sharing and maintenance of software
is likely to be under-resourced.

A software subfield The second production system asso-
ciated with direct academic credit is the development of
a software subfield. This appears to be the case in com-
putational biology, where publications about software are
viewed as primary contributions. For example Carnegie
Mellon University now has a Department-level Center for
Computational Biology in the School of Computer Science,
illustrating the centrality of software to this field. This
takes the archetypal flow of science shown in Figure1 and
replicates it with software as the research subject. The
formation of departments with this focus means that the
institutional judges of reputation are appropriately aligned
with the need for software contribution. Nonetheless the
separation between a software publication and working soft-
ware described for the parallel practice persists. Software
and algorithmic publications advance the theory but some-
one has to maintain and support the working software.

Hybrids
We also identified hybrids between the two major production
systems identified above. The first is a hybrid between direct
academic credit and commercial software production. The
second is a hybrid between cooperative support service and
indirect academic credit, seen in the large Physics collabo-
rations of Case 1.

Dual-licensingCommercial/Academic hybrids place a foot
in the commercial economy and a foot in the academic
reputation economy. The Muscle author’s dual licensing di-
rection in Case 3 illustrates this approach. Software licenses
can be written so that resources are gained directly from
commercial use, while academic publications and use gar-
ners citations and builds an academic profile. The commer-
cial resources cross-subsidize the academic requirementsof
maintenance and support. Some of the commercial packages
considered above appear to have begun in this mode. This
is a well-aligned situation, generating financial resources for
costly releases, maintenance and support that also supports
academic use. However clearly this is only possible in areas
where there is commercial demand for the software and this
is not the case for much scientific software.

Collaboration Service Work Figure3 illustrates the hybrid
innovation represented by the physics collaborations dis-
cussed in Case 1. Here the basic contours of the archetypal
system remain unchanged, but the category of Research is
widened to include many more of the supporting activities,
including theory, the design, building, operation and main-
tenance of the data-generating machines and the production
and maintenance of software. This includes software work
provided to the collaboration as part of the “service work
economy” described above. All of the collaboration mem-

Researc

Theory

PublicationResources Reputation

Citations

Feedback Link

Instrument
Data

Software

Figure 3. A depiction of changes to scientific reputation economy in
large Physics collaboration

bers are listed as authors, regardless of whether they worked
on that specific paper. At first brush then, this appears to
produce an appropriate alignment of incentives, with some
collective earning reputation and converting it to resources
available to all.

However, our interviews show that this arrangement pushes
the question of rewarding software work back inside the
collaboration, agreeing with the findings of [1]. Externally
the collaborations maintain that all contributions are equal
and ought to be respected as such by external institutions.
This is not unproblematic as illustrated by an academic
associated with the DZERO collaboration: His university’s
tenure requirements include printing out copies of all papers
on which one is an author. He diligently compiled all the
DZERO publications and submitted them to the department
secretary for printing and adding to the tenure binder: over
2,000 pages later the printer had broken. It is unlikely
that the regular tenure case process can operate with these
publications as evidence of contribution.

Our interviews confirm this: internally reputation is garnered
and assigned informally, through recommendations and vis-
ibility opportunities, such as opportunities to present prelim-
inary posters. In this process, our informants indicated that
software work by scientists, as service or towards papers,
took a lower status position to theoretic and empirical scien-
tific results and even to instrument building.

Collaboration implications
The bifurcation between reputation for a software publi-
cation and citations derived from software use, shown in
Figure 2, has potentially negative implications for direct
collaboration on software between scientists. The authors
of the initial software publication are frozen in time at its
publication. Contributions to maintenance and support by
others, while crucial for the software’s usefulness and ci-
tations, are not rewarded by citations to the original paper.
This means that such contributions are hard to turn into
sources of academic credit for the later collaborators; it is
awkward to show on a resume or argue at a tenure case that
you should derive some portion of the credit from citations
to a paper on which you are not an author.

Some projects approach this by releasing additional publi-
cations, adding authors who have made significant contribu-

tions. However in order to have this paper published in a ad-
equately high status journal, those contributions likely would
have to be discovery rather than maintenance. Regardless,
users of the software may continue to cite the original paper.
Making matters worse, if the contribution was significant
enough for its own publication it is quite likely that the
contributors would garner more reputation from creating
their own package and publishing independently, as argued
by the author of Muscle.

Another approach is to request that users cite “the software
project” directly, rather than a publication, listing the authors
and contributors in a separate, updatable location, similar to
open source projects where files such as THANKS maintain
contributor lists. This is awkward since such citations are
sometimes difficult to add to bibliographies and instead rel-
egated to footnotes. Even if they are added to bibliographies
since they are not publications they may not be considered
subjects for citation counts. Further, if a contributor arrives
later in the project it is awkward to make the case for the size
of the fraction of credit they ought to receive.

Given these issues it seems likely that significant software
contributions to existing scientific software projects arenot
likely to be rewarded through the traditional reputation econ-
omy of science. Together these factors provide a reason to
expect the over-production of independent scientific soft-
ware packages, and the under-production of collaborative
projects in which later academics build on the work of earlier
ones.

CONCLUSIONS
Software is increasingly important to science. Modern scien-
tific results depend on a network of software created inside
and outside the direct context of the research. As opposed
to hardware, software provides unparalleled opportunities to
share and collaborate. Just as science results stand on the
shoulders of those who developed new methods, validated
instruments and theory, the software work in these collab-
orations draws together the combined work of many in the
production of new science results.

This software is created in a variety of production systems,
as described in our Discussion. While we chose our cases
with care, our conclusions are, as is typical with case studies,
limited; future work should expand the representativeness
of this work, trace out the dependencies of more papers,
undoubtedly bringing extension and nuance to our classifica-
tion. Nonetheless even the systems we report have differing
alignments between the software expected from them and
the rewards available within the system. While some of
these seem relatively unproblematic, such as commercial
production in fields with immediately valuable applications,
others appear problematic. In particular we highlighted the
potentially pernicious implications of the academic credit
production system for collaboration and maintenance.

Acknowledgements—This material is based upon work sup-
ported by the National Science Foundation under Grant No.
#0943168.

REFERENCES
1. J. Birnholtz. When authorship isn’t enough: Lessons fromCERN on

the implications of formal and informal credit attributionmechanisms
in collaborative research.Journal of Electronic Publishing, 11(1),
2008.

2. J. Carver, R. Kendall, S. Squires, and D. Post. Software development
environments for scientific and engineering software: A series of case
studies. InProc. ICSE, pages 550–559, 2007.

3. K. Crowston, K. Wei, J. Howison, and A. Wiggins. Free (libre) open
source software development: What we know and what we do not
know.ACM Computing Surveys,
44(2):http://floss.syr.edu/papers/view/21, 2012.

4. J. N. Cummings and S. Kiesler. Collaborative Research Across
Disciplinary and Organizational Boundaries.Social Studies of
Science, 35(5):703–722, 2005.

5. T. A. Finholt and G. M. Olson. From laboratories to collaboratories: A
new organizational form for scientific collaboration.Psychological
Science, 8(1):28–36, 1997.

6. L. Hatton. How accurate is scientific software?IEEE Transactions on
Software Engineering, 20(10):785–797, 1994.

7. C. Hine. Databases as Scientific Instruments and Their Role in the
Ordering of Scientific Work.Social Studies of Science,
36(2):269–298, 2006.

8. D. Kelly. A software chasm: Software engineering and scientific
computing.IEEE Software, 24(6):119–120, 2007.

9. K. Knorr-Cetina. The ethnographic study of science: towards a
constructivist interpretation of science. In K. Knoor-Cetina and
M. Mulkay, editors,Science Observed, Beverly Hills, 1983. Sage.

10. K. A. Lawrence. Walking the tightrope: The balancing acts of a large
e-research project.Computer Supported Cooperative Work,
15(4):385–411, 2006.

11. R. K. Merton. The Matthew effect in science, II: Cumulative
advantage and the symbolism of intellectual property.Isis,
79(4):606–623, 1988.

12. G. M. Olson, D. E. Atkins, R. Clauer, T. Finholt, F. Jahanian, T. I.
Killeen, A. Prakash, and T. Weymouth. The upper atmospheric
research collaboratory (uarc).ACM Interactions, 5(4):48–55, 1998.

13. D. Ribes and T. A. Finholt. Planning infrastructure for the long-term:
Learning from cases in the natural sciences. InProceedings of the
Third International Conference on e-Social Science, Ann Arbor, MI,
June 2007.

14. R. Sanders and D. Kelly. Dealing with risk in scientific software
development.IEEE Software, 25(4):21–28, July-Aug. 2008.

15. Science Watch. Twenty years of citation superstars.Science Watch,
14(5), 2003.

16. J. Segal. Some problems of professional end user developers. InProc.
IEEE Symp. Visual Languages and Human-Centric Computing (Vlhcc
07), pages 111–118, 2007.

17. J. Segal. Models of scientific software development. InProc. 2008
Workshop Software Eng. in Computational Science and Eng. (SecSe
08), 2008.

18. J. Segal. Software development cultures and cooperation problems: A
field study of the early stages of development of software fora
scientific community.Computer Supported Cooperative Work
(CSCW), 18(5):581–606, 12 2009.

19. S. Star and A. Strauss. Layers of silence, arenas of voice: The ecology
of visible and invisible work.Computer supported cooperative work
(CSCW), 8(1):9–30, 1999.

20. C. A. Stewart, G. T. Almes, and B. C. Wheeler, editors.NSF
Cyberinfrastructure Software Sustainability and Reusability Workshop
Report. Indiana University, 2010.

	Introduction
	Background
	Three Cases
	Case 1: Large Physics Collaborations
	Identifying software involved

	Case 2: Structural Biology
	Identifying Software Involved

	Case 3: Micro-biology through Bioinformatics
	Identifying software involved

	Discussion
	Software as Supporting Service
	Software for academic credit
	Hybrids
	Collaboration implications

	Conclusions
	REFERENCES

