
Scientific software production and collaboration

James Howison
Institute for Software Research
School of Computer Science
Carnegie Mellon University

jhowison@cs.cmu.edu

James D. Herbsleb
Institute for Software Research
School of Computer Science
Carnegie Mellon University

jdh@cs.cmu.edu

ABSTRACT
Software plays an increasingly critical role in science, in-
cluding data analysis, simulations, and managing workflows.
Unlike other technologies supporting science, software can
be copied and distributed at essentially no cost, potentially
opening the door to unprecedented levels of sharing and col-
laborative innovation. Yet we do not have a clear picture of
how software development for science fits into the day-to-
day practice of science, or how well the methods and incen-
tives of its production facilitate realization of this potential.
We report the results of a multiple-case study of software
development in three fields: high energy physics, structural
biology, and microbiology. In each case, we identify a typ-
ical publication, and use qualitative methods to explore the
production of the software used in the science represented by
the publication. We identify several different kinds of pro-
duction systems, characterized primarily by differences in
incentive structures. We identify ways in which incentives
are matched and mismatched with the needs of the science
fields, especially with respect to collaboration.

ACM Classification Keywords
H.5.3 Group and Organization Interfaces: Computer-support-
ed cooperative work

INTRODUCTION
Software plays an increasingly critical role in science, in-
cluding data analysis, simulations, and managing workflows.
Unlike other technologies supporting science, software can
be copied and distributed at essentially no cost, potentially
opening the door to unprecedented levels of sharing and col-
laborative innovation.

While science is a collaborative field, both in terms of spe-
cific projects and indirectly over time as research projects
build on each other, it is not selfless. Scientific software
work takes place in the context of competition amongst sci-
entists for recognition and attention that focuses on publica-
tions and citations. This environment makes the incentives

Version of Aug 6 2010. Version without Figs 1-3 submitted for review
to CSCW 2011. Please contact authors before distributing. This material
is based upon work supported by the National Science Foundation under
Grant No. 09-43168.

and rewards for software work quite different than that found
in other domains.

We do not have a clear picture of how software development
for science fits into the day-to-day practice of science, or
how well the methods and incentives of its production facil-
itate realization of the potential of software in science.

BACKGROUND
Software work in science has received limited research at-
tention, despite its growing importance. What work there is
has been focused in two areas: Collaboratories and Software
Engineering.

The literature on collaboratories has focused on software
as an infrastructural support for collaboratory science, such
as in the UARC scientific collaboration Upper Atmospheric
Research Collaboratory [3, 9]. A common finding is a
division of labor between scientist and computer scientists
or software developers creating a tension between research
goals and software development goals [8, 10, 2, 5].

In Software Engineering “a chasm opened between the
scientific-computing community and the software engineer-
ing community ... the bulk of the software engineering com-
munity’s research is on anything but scientific-application
software” [6]. When SE has approached scientific software
it has focused on the idea that SE methodologies can help
assess, test and improve software correctness [4, 1]. The rec-
ommendations in this work often exhort scientists to adopt
imported practices, yet they do without understanding what
underlies and thus causes the situation they seek to fix.

What is needed, as we see it, is to understand scientific soft-
ware as an independent production system, by which we
mean examining the incentives underlying its production and
considering their impact on the practices and the software
produced. Knowing what drives and constrains current prac-
tices forms the basis for developing interventions which can
improve the situation.

There are two examples of work towards this end. [11] is
a survey of scientific software that specifically considers the
organization of its production, such as whether it was pro-
duced by commercial interests or open source projects, al-
beit as one source of correctness risk. Segal [12, 13, 14]
approaches scientific computing through the lens of end-
user software development, a branch of SE research that
recognizes that the practice of software development regu-

1



larly occurs outside the traditional role of professional soft-
ware developers. [13] describes field studies of two modes
of software development in science. She identifies two sit-
uations: “when the software is intended for use either by
the developer herself/himself or by closely co-located col-
leagues, for example, people working in the same labora-
tory” which she contrasts with software developed “within
a closely co-located group but intended for the wider scien-
tific community of which the developers form a part.” While
these distinctions in practice and intended use are important
we believe that they can be improved through a focus on the
incentives faced by scientists producing software and that
this approach is most likely to yield actionable knowledge.

THREE CASES
We therefore began this research with a set of sensitizing
concepts: incentives, collaborative practices and software
correctness in the scientific context. As we conducted these
cases we refined our questions to four that form a convenient
way to present our results.

1. What software is involved in this scientific field?
2. Who created or maintains this software?
3. What incentives drive that creation or maintenance work?
4. Why is the software trusted?

Since each scientific field is very large we needed to ground
our cases. This we did by identifying specific published pa-
pers which we refer to as focal papers. Since a published
paper is the primary scientific unit of work and contribu-
tion it is an appropriate route into these fields. While we
confirmed with our interviewees that our focal papers rep-
resented a “typical” workflow in their work and field, we
present these as individual cases of software heavy science
in each field. This choice, of course, allows us to provide
rich detail at the risk of representativeness; we judged this
tradeoff to be appropriate at this stage of inquiry.

For each specific publication we interviewed the authors
most associated with the software work of the paper. These
interviews provide direct answers to the first question, al-
lowing us to identify the software involved. This includes
software written or directly used by the authors in the course
of the research leading to the publication of the focal pa-
per. Yet the involvement of software does not stop there.
We probed beyond the surface, seeking additional software
relevant to these publications. As we will see this revealed
software involved in, for example, creating datasets used by
the authors or in performing analyses or simulations needed
for the work but performed by others.

For each of the software artifacts identified we pushed out-
wards. We first sought to understand how the authors came
to have the software they used, then we sought to understand
the origins of all the software involved, arranging interviews
with some package authors. These interviews were compli-
mented by more general interviews with scientists and soft-
ware practitioners in the field (some conducted prior to iden-
tifying our specific paper, some afterwards). In this way we

build a picture of the scientific software ecosystem involved
in these specific pieces of science.

Following the three cases we provide an extended Discus-
sion which builds a taxonomy of software production sys-
tems in terms of their incentives, practices and logics of cor-
rectness.

CASE 1: LARGE PHYSICS COLLABORATIONS
The first case we present is science in large common-goal
collaborations. We have conducted interviews with partic-
ipants in a number of collaborations in physics, including
STAR, ICECube, CMS, ATLAS and LIGO. These collab-
orations are large, comprised of hundreds of scientists all
focused on a relatively narrow, shared goal [7]. The collabo-
rations are literally centered on large scientific instruments,
from particle accelerators to cubic kilometer instrumented
blocks of ice in the Antarctic which generate and measure
physical conditions of interest. The method uses simulations
of theoretically understood processes which are subtracted
from the massive collected data to isolate and characterize
an extremely small number of interesting events. These col-
laborations typically have substantial central funding (often
through multiple, overlapping grants over long time-frames)
complemented by a range of smaller grants to member labs
focused on particular aspects of the projects.

Figure 1. The first two pages of our focal publication in miniature. The
first page has the title and all author names, the second begins with
(STAR collaboration) and lists institutions followed by the abstract.

Focal publication Our focal paper for this case was pro-
duced by the STAR high-energy physics collaboration.
It characterizes the Upsilon particle, including statistical
bounds for its energy range. This paper was identified
through an interview with the software coordinator for the
STAR collaboration.

The first thing that strikes one about the paper is that it in-
cludes the full list of collaboration members (including cen-
tral IT staff) as authors (taking up the first two pages, see
Figure 1) and does not indicate who was particularly respon-
sible for this analysis. This is normal practice in these col-
laborations. The software coordinator was able to share an
internal tech note which describes the analysis in detail in-
tended to be sufficient for replication inside the collabora-
tion. This lists six scientists as “the primary authors of this

2



Instrument Data
Production

Simulation
Production

Results:
Plots

Systematic
Uncertainties

ROOT4STAR

Analysis Makers & 
Macros

PYTHIA
STAR Core Software 

team with Service 
Work contributions

STAR Core 
Simulation Production
+ 1 analysis scientist Two scientists (post-

doc and grad student)

Anaysis

Data 
Analysis

Embedding 
AnalysisMakers

Embedding
Software

Data 
Production
Software

External 
Open Source Project

ROOT 
Framework

External 
Open Source Project

Figure 2. A depiction of the workflow of a specific HEP analysis. Soft-
ware is depicted in ovals, the boxes at the bottom show who produced
the software.

paper”; the software coordinator identified the two listed first
as primarily responsible for the software portions of the pa-
per and we interviewed them. The tech note provides details
of the software most closely associated with the analysis;
this formed the basis for our interview with the authors.

Figure 3 shows the workflow and software involved in our
prototypical paper for this field.

Identifying software involved
The instrument run creates raw data, which is “pre-processed”
from electrical signals into initial descriptions of “events” in
the detector. The analysis begins with this data and works
through 25 scripts known by the authors as “the analysis
macros.” The first set of scripts, called “Makers,” accesses
a particular subset of a particular run of “pre-processsed
data” together with a specific version of a software library
called ROOT4STAR, ensuring that it is synchronized with
the dataset. The “Data” set of scripts perform the physics
analysis itself. The remaining scripts assess “systematic un-
certainties” in the analysis, using a specific simulation prac-
tice called “embedding.” Producing these simulations in-
volve more software.

Thus the full workflow for the paper draws on four kinds
of software: analysis macros, the ROOT4STAR library, the
software involved in data production and the software in-
volved in simulation production. For each of these we now
consider our three questions, addressing its creation, incen-
tives and its logic of correctness.

Analysis scripts The authors of the analysis scripts were two
younger scientists, one a post-doc and one a senior PhD stu-
dent. They worked in different labs at different institutions.
Each had some background in Computer Science consisting
of 2 or 3 years in an undergraduate CS major before focusing
on Physics through graduate school.

One scientist was responsible for the Makers and the Data
scripts and the other for the Embedding scripts, but they

described being in regular touch through email and phone.
Each scientist worked primarily on his or her laptop, pro-
totyping their scripts on small sub-sections of the data, be-
fore running them in user accounts on “STAR Cluster ma-
chines.” They shared their code through directories on this
system and did not use source control, considering it unnec-
essary for small groups during the preparation of the analy-
sis. They did not write tests or use any particular software
development methodology.

Their work unfolded in the context of weekly meetings of
their physics analysis group. The analysis working group
includes multiple labs and people experienced with the in-
strument and similar analyses. The group assess the cred-
ibility of the results in the context of their knowledge of
both the instrument, results being produced elsewhere in the
collaboration and the physics theory which links them. In
the words of the authors, “If you are doing something that
looks really strange, or you have a result that doesn’t make
sense, they can give you a heads up right away.” This iter-
ative, enveloping process, plus the fact that they wrote the
code themselves, were the main logic of correctness used by
the authors.

Once the group has decided to move to publication the col-
laboration organizes a “godparent” committee to review the
paper. At this point the analysis scripts are moved into a
shared CVS and tagged; a policy insisted upon by the central
software coordinator. The review undertaken by this com-
mittee focuses on the physics findings, but also assesses the
completeness of the tech note. It includes a scientist mem-
ber specifically responsible for assessing the software. That
person runs portions of the analysis to confirm that they get
the same results. In the case of this paper the only issues un-
covered in this process was a script missing from the central
CVS. This review was mentioned only secondarily as a rea-
son to believe in the integrity of the code; it was primarily a
check on reproducibility.

The incentives to write this software were clear and direct:
without these scripts there would be no analysis and thus
no paper. In the words of a member of the central IT staff
of a different collaboration, scripts like these are “all about
getting the plots,” where the plots refer to the results forming
the central findings of the paper.

Our informants believed that their greater than average
technology skills did provide some comparative advantage
within the collaboration. Nonetheless they were clear that
they expected to be judged on physics results obtained, not
their software skills. They argued that writing code was
something that was intensely important during the early
stage of one’s career, but that career progression would lead
them away from writing software. They speculated that fo-
cusing entirely on software contributions not directly linked
to specific results would lead to a move out of the main ca-
reer track; they were unsure how that would work. They in-
dicated that their career progression would rely on their rep-
utation within the collaboration, especially on letters written
by their PIs. They expected these letters to mention their

3



software work only in the context of their scientific compe-
tence.

Our informants told us that they “of course” expect their
code to be open to review and for the use of anyone inter-
ested, within the collaboration. The issue of sharing outside
the collaboration did not arise, in their minds, since the code
was so specialized. They did not expect to support others us-
ing their software since they believed that it was too special-
ized and in any case the code’s availability and documenta-
tion through the Tech Note ought to be sufficient. From time
to time they had sought code from others in the collabora-
tion, mainly as a demonstration of portions of the analysis
or plot generation, and had found everyone basically forth-
coming, although some were quicker and more helpful than
others.

ROOT4STAR Library The ROOT4STAR library is funda-
mental to the STAR collaboration. It is a specialization of
a library called ROOT that is created outside of STAR and
is widely used in the physics community. ROOT4STAR
deals with data input/output issues, optimized implemen-
tations of algorithms needed through the collaboration and
plotting tools.

ROOT4STAR was constructed with two main contributions.
The first are from “5-7” software professionals (often with
physics backgrounds) working in a “central IT group.” The
second are collaboration members, often students or post-
docs, assigned from member labs to provide “service work.”
This “service work” is a tradition in physics collaborations.
Originally it primarily referred to “shifts” monitoring the
equipment but now increasingly includes software work.

These libraries are a substantial achievement, providing a
platform for the many analyses undertaken throughout the
collaboration. As such it is software that is written to be
used over and over again by what are essentially End User
Programmers. It is subject to much more formal software
engineering practices, such as tests and line by line code
reviews. It is also documented for use in a way very dif-
ferent to the description of the analysis scripts in the tech.
note. Despite its importance ROOT4STAR is not mentioned
or cited in our focal paper.

Data and Simulation Production Software is involved two
aspects of the analysis: the production of the initial dataset
and the production of simulation data used to demonstrate
the sensitivity of the analysis.

Data production refers to the shared processing of raw in-
strument readings into annotated datasets describing the
first-level physical phenomenon in terms of events, for ex-
ample particles and their energies and tracks. This can be
highly computationally expensive, usually drawing on spe-
cialized clusters and on federated Grid computing resources.
This work is undertaken through service work from collab-
oration members with substantial contribution from central
IT. While the software involved in this work was not cited in
the paper the Open Science Grid is acknowledged.

Our focal paper used a particular simulation technique called
“embedding.” Here a simulated target signal is embedded in
the real background from the data and the analysis scripts
run. This demonstrates and measures the ability of the anal-
ysis to identify the candidate signal in the real context of
the instrument. The collaboration runs a central facility to
provide embedding simulations for the publications of the
collaboration. This is staffed in part by central IT staff but
also with lab members performing “service work.”

In the case of our focal paper the embedding simulation
called for something new and specific, beyond the exist-
ing code of the central simulation production team. One
of the two scientists writing the analysis scripts discussed
above worked with the simulation team to build new code
for the embedding simulation. The interview made it clear
that this assistance was important to removing a bottleneck
and getting their analysis to a publishable stage. This code
was stored separate from the analysis scripts in the central
simulation team’s CVS because it was viewed as likely to
be reused in the future. The embedding code drew on two
packages produced by academics outside the collaboration:
PYTHIA and GEANT. While the simulation code, as with
ROOT4STAR and the data production code was not directly
cited, these external packages were.

“Service work” offers an opportunity to contribute to the col-
laboration in important ways. It is provided by labs as a con-
dition of membership, motivated by access to the data and
inclusion on all authorship lists. It is also motivated because
some additional grant funding is available for software work
in the collaboration. One central administrator spoke of a
concern with this situation saying that members sometimes
“promise software but hope for science”; that the resources
intended for software are cross-subsidizing work viewed as
more directly linked to the collaboration’s scientific mission.

CASE 2: STRUCTURAL BIOLOGY
Our second case is Structural Biology, a science concerned
with the identification and characterization of molecules.
There are many such molecules yet to be described, some
of which prove very valuable in applied settings, especially
for drug development. We interviewed five scientists and
one information technologist working in this field, which is
made up of many separate labs competing for primacy in an-
alyzing the structure of their chosen molecule. This primary
unit is reflected in the author lists of publications, typically
between three and six authors. The lab head is listed last
and the first authors are those primarily responsible for the
specific analysis. Figure 3 shows the workflow and software
involved in our prototypical paper for this field.

Focal Publication Our focal paper contributes to the “ratio-
nal design” of drugs to counter botulism and was recently
published in PLOSone. The study reveals the physical struc-
ture of peptides which form complexes with the Botulism
toxin which provides crucial input to the process of devel-
oping drugs to block the disease agent. We interviewed the
lab PI and the first author of the paper who confirmed this as
“typical” of their work.

4



Raw Data
from

Synchotron

Reflections
with

Coordinaties

Initial 
Candidate 
Structure

Refined 
Structure

and
Fit Statistics

Figures
for

Paper

Scalepack (HKL-2000)
Denzo (HKL-2000) CCP4

Phaser

phenix.refine (PHENIX)
ELBOW (PHENIX)

COOT
PyMol

Express Purify Crystallize
Scan at

x-ray
Synchotron

SBGrid
Distribution

CCP4 
Collection

PyMol 
Project
(now 

Schroedinger 
Inc.)

HKL 
Research 

Inc.

Package 
Authors/

Maintainers

Science-
specific
software 

distribution

Packages
used

Software 
Steps

Physical
Chemistry

Steps

Lab Cluster

MolProbity

WebService
(MolProbity Only)

Computing
Infrastructure

MolProbity
Authors

Science Workflow

Software Sourcing

PHENIX
Collection

ELBOW 
Authors

Phaser 
authors

Figure 3. Software and its sourcing in a Structural Biology Workflow

The work of describing the structure divides into two phases:
a data collection phase primarily composed of wet lab work
and a dry phase primarily composed of analysis supported by
software. The wet lab phase involves isolating the molecules
of interest, purifying them and crystalizing them. These
crystals are then subjected to X-Ray Crystallography at a
facility known as a Synchotron. This process was simpli-
fied in a description by one informant as bombarding the
crystalized molecule and producing a set of x-ray shadows,
followed by a software supported combinatorial search for
known components of molecules whose structure and con-
figuration might throw parts of this shadow. Our informant
estimated the time spent on the project as two months, with
70% of time spent on wet work and 30% of time on the
software-assisted analysis.

Identifying Software Involved
The first task requires obtaining the raw data from the Syn-
chotron and converting it to a set of reflections and coordi-
nate data. This involved two pieces of software (Scalepack
and Denzo) available in a package called HKL-2000. The
next step takes these inputs and produces an initial structure
that could have caused the observed xray shadows. The au-
thor used a program called Phaser, included in a package
called CCP4. This initial candidate structure is then inter-
actively refined using a combination of visualization and fit
statistics. The author used programs called PHENIX and
COOT and produced a fit summary using a program called
MolProbity. Finally the paper includes many illustrations
of the structures as figures; these were produced with the
PyMol package. Each step in this workflow is run manu-
ally. The final structure is, as a requirement of publication in
Structural Biology, uploaded to the Protein Databank. The
computing was all carried out on the lab cluster, with the

exception of MolProbity which is available as a Web Ser-
vice. The software was installed and maintained outside the
specific lab, through an organization called SBGrid.

SBGrid SBGrid is a “small IT organization funded exclu-
sively by our [140+] member laboratories” based at Harvard
Medical School. It provides two services. The primary ser-
vice is a distribution of software packages relevant to Struc-
tural Biology (the other service, not used for our focal paper,
is access to the Open Science Grid). Members pay a fee
(a few thousand dollars) typically funded from NIH grant
money, but waived for a small number of labs which con-
tribute a package to the distribution. The distribution was
started by the SBGrid PI in 1999 to synchronize the soft-
ware at multiple labs at which he was working. The PI is
now a research-focused Associate Professor and the soft-
ware distribution is managed by one full-time information
technologist (“philosopher-cum-software-engineer”) whom
we interviewed. His full-time salary is paid from fees from
the member labs.

The SBGrid software distribution works in a way very simi-
lar to linux software distributions, such as Debian or RedHat.
The distribution bridges between software authors and users,
providing pre-packaged, pre-compiled software applications
arranged for maximum compatibility. The distribution also
provides an updating service which pushes new versions out
to member labs’ computer systems. Further the coordina-
tor monitors the projects producing each of the packages
for relevant updates or bug-fixes. Finally SBGrid provides
first level support for packages and helps members contact
project developers for further support.

The author of our focal paper indicated that SBGrid saved a
significant amount of time and gave him confidence that the
packages were up to date and likely to work well together.
Nonetheless SBGrid was not acknowledged or cited in the
paper and the authors did not consider that necessary. SB-
Grid, in fact, does not provide a citation that could be used,
nor request acknowledgement. They do maintain a list of
member labs but do not maintain a list of papers that use
their distribution.

CASE 3: MICRO-BIOLOGY THROUGH BIOINFORMATICS
Our third case study is in the field of microbial biology using
bioinformatic techniques. The broad challenges in this field
are to identify organisms, understand the relationships be-
tween organism’s DNA and functions and to study the evo-
lution of these organisms. These functions may find com-
mercially important applications, such as in processing of
plant-matter into bio-fuels. As with Structural Biology, this
field is also organized into small labs with the lab head as the
PI listed last and the primary author(s) listed first on publi-
cations.

Focal Publication We interviewed an author of a bioin-
formatics paper recently published in the journal Science.
The paper focused on Nitrogen fixation functions of a micro
ecosystem in which leaf-cutter ants cultivate fungal crops.
Our informant was familiar with the full analysis and was

5



Obtain 
DNA

Sequence
DNA 

DNA in public databases

Sequencher
Newbler

Identify
Organisms

Assess 
functions

Assess 
evolutionary 

origins

ARB
Greengenes

Muscle
BLAST 
Webservice

MrBayes

Interpret
Chromat-
ograph

Figure 4. A depiction of the workflow and software used in our focal
paper in bioinformatic micro-biology.

able to report on packages used in that paper and in papers
he was working on with a similar workflow. Figure 4 shows
a generic workflow, listing packages used at each step.

The analysis begins with data collection to obtain relevant
organisms from interesting systems. In this case this means
field work in Argentina, Costa Rica and Panama. The organ-
isms are cultured, generating sufficient DNA for sequencing
at specialized centers, often supported by science funding
agencies. The first software-dependent step is interpreting
raw sequencing data as strings of DNA bases (A,C,T,G). The
remaining steps all occur through comparisons between that
sequence and public databases of previously sequenced and
annotated DNA. Organisms are identified through a partic-
ular locus called 16S. Their full sequences are then com-
pared to DNA databases which contain annotations regard-
ing functions associated with different loci which, combined
with knowledge of the researcher’s particular system, en-
ables reasoning about the likely functions of the organism.
Finally evolutionary trees are constructed.

Identifying software involved
Identifying the software used for this publication was rela-
tively simple. During the interview we were referred to the
Supporting Online Materials appendix to the paper. While
the paper itself is 3.5 pages long, the appendix is 35 pages
long. The first 6 pages are Materials and Methods, 12 pages
of ”Supporting Text,” 17 pages of detailed data and 2 pages
of references. The Materials and Methods section takes care
to identify each software package used, using different kinds
of citations which we discuss below.

Interpreting the raw sequence data was done with the Se-
quencher package, 16S identification with the ARB and
Greengenes package, full sequence alignment with the mus-
cle package and the NCBI BLAST webservice and phyllo-
gentic trees constructed using the MrBayes package. Be-
yond these packages, our informant also described a series
of “power-user” scripts he wrote that linked together pack-
ages like these in similar papers.

Sequencher The sequencing in this case occurred via a chro-
matagraph, which exploits differing rates of fluorescence be-
tween the four components of DNA. The raw flourescene
data must be interpreted in a software-dependant process.
This software comes in two forms: either interactive, used
for short sequences (such as 16S) or fully automated for
whole genome sequencing.

The interactive software used in this lab is called Se-
quencher, provided by a specialized company (Gene Codes
Corporation). We were not able to interview its creator, but
know something of its background from media coverage. Its
author, and now CEO of the company, was originally trained
in music and psycholinguistics. He formed the company in
1988, releasing the Sequencher package in 1991. In 2001
the company was asked to help with the identification of the
remains of those killed at the World Trade Centre through
shotgun DNA sequencing (separating DNA from multiple
sources) and the firm now markets “Forensic DNS analysis
software” in addition to Sequencher.

The incentives for producing this software are straightfor-
ward: it is a profit centre for the firm. Sequencher is a
fully commercial package; it must be paid for both academic
and commercial use and license management includes key
servers and dongles. We believe that the software is written
and maintained in house at the firm’s Ann Arbor Michigan
office by employed software engineers.

The author on our focal paper indicated that Sequencher is
trusted because it is “widely used” and is the standard soft-
ware for interactive gene sequence construction. The soft-
ware is cited in text with just the name of the firm; it does
not appear in the References listing. In this way it is treated
in a manner most similar to providers of hardware such as
pipettes and chemicals.

Newbler An example of automated software for whole gene
construction is Newbler, which is written by a “next gen-
eration” sequencing machine company (454 Life Sciences).
The software runs directly on 454 Sequencing machines,
but is also made freely available to researchers, including
source code for advanced configuration. Our focal paper
does not name the software directly but describes the equip-
ment, naming the firm and citing a Nature paper. There are
45 authors for this paper, employees of 454 Life Sciences
and academic scientists and aims to “describe a scalable,
highly parallel sequencing system with raw throughput sig-
nificantly greater than that of state-of-the-art capillary elec-
trophoresis instruments.” The incentives for producing and
maintaining this software are clearly linked to the sale of
the 454 machines; the software is essentially useless without
data derived from these machines. The Nature publication is
likely of great value to those listed with academic connec-
tions or aspirations.

As with Sequencher our informant indicated that this soft-
ware is trusted because it is widely used and associated with
a highly reputable company.

Greengenes and ARB Greengenes is both a specialized
database for 16S sequences and a specialized web service for
organism identification. Both the database and the software
are produced, maintained and made available as a service
by the Lawrence Berkeley National Laboratory. The service
is freely available for all users, including commercial use.
Our focal paper provides a citation in the reference list to
the Applied Environmental Microbiology journal; the home

6



page for the software has “Citation” as a top-level item and
lists this publication first. The homepage has a short “Those
citing Greengenes section” which lists only three papers; our
informant indicated that it was much more widely used than
this.

ARB is a GUI client focused on 16S identification tools. It
is produced, maintained and made available by two German
academic institutions. The paper provides a citation to a pub-
lication titled, “ARB: a software environment for sequence
data” in Nucleic Acids Research and all authors are asso-
ciated with the two academic institutions. The download
page states that “Use is permitted for non-profit purposes”
but does not contain clear conditions or purchase informa-
tion for commercial use.

Our informant indicated again that both these packages are
trusted because they are widely used and from reputable
sources.

BLAST Webservice The final three steps compare the se-
quences with known sequences by comparing against pub-
lic databases. This process involves an algorithm known as
BLAST, in the words of our informant, “BLAST is the most
important and most useful and most used piece of software
in biology.” This algorithm finds appropriate matches in the
strings of DNA sequences. The algorithm itself is imple-
mented in many packages, including ARB and Greengenes.
The publication describing BLAST is now the most cited
paper in all of biology.

The National Centre for Biotechnology Information, funded
by NIH, provides a Web Service version of BLAST which
accesses the US Genbank as well as downloads of a canon-
ical implementation of the BLAST algorithm. The NCBI
maintains and provides BLAST as a “top-level” service
along with the PubMed library. We have not interviewed the
maintainers of the BLAST web-service, but our informant
indicated that he believed the BLAST software and webser-
vice to be maintained by professional software engineers un-
der the guidance of scientists employed by NCBI.

Muscle For long sequence alignment they used a package
called MUSCLE. In the focal paper this is cited with an
academic citation to a single authored article published in
Nucleic Acids Research. We interviewed the author of the
Muscle package and the paper. This package is relatively
well-known; the author points to over 10,000 citations to the
two publications describing the package. However, it is not
as widely used as its “slick GUI” competitor ClustalW.

The author describes himself as an “unemployed gentleman
scholar,” a phase best clarified by a short biography. He
earned a Physics PhD, beginning a postdoc but deciding that
he was a better “software person” than he was a Physcist.
In the early 1990s he began a voicemail technology com-
pany which he sold to Intel in 1999. The proceeds from this
sale have supported him through until now. Following the
sale he was “looking for interesting problems” and attended
some biology lectures at nearby UC Berkeley where he came

to the realization that, in his words, “biology == strcmp()”
[the C string comparison function name]. He worked with
a professor over a summer and produced the forerunner of
Muscle, releasing the package itself a short time later. The
package is released as public domain, which he believes to
be more appropriate than open source licenses.

He is now well published in this area, on the editorial board
of relevant conferences and is one of a handful of contribu-
tors he refers to as “algorithm people,” distinguishing them
from biologists. Recently he has produced an algorithm he
describes as 500 times as fast and good as BLAST for align-
ment of very long sequences. This he now releases under
a mixed license, closed source but free for academics and
available for a fee to commercial users. The use of such a
hybrid setup is new for him.

He characterized the environment for the production of these
tools as highly individualized and competitive. He does
not build on other tools in his domain, nor does he work
to push his contributions into broader packages. He argues
that this enables him to be unconstrained by architectures
and existing code and because it promotes code portability
(by not requiring libraries etc). He considered it obvious
that algorithm writers would not collaborate. Pushed, he of-
fered two reasons for this. The first was that there was lit-
tle credit to be had in being seen to incrementally improve
another’s package, and any contributions—even substantial
re-writes—would accrue citations to the original author’s pa-
pers, even if he “published on” the changes. The second was
that he did not wish to be at the mercy of members of other
teams in decisions about what to include in packages; this
would not only be slow and involve substantial politics but
would be inappropriate given the competitive nature of this
field.

Private “power-user” scripts Our Structural Biology in-
formant described himself as a power-user meaning he pre-
ferred speed and accuracy (cli) over ease of use (GUI). It also
means that he is comfortable working with independent tools
rather than integrated software suites, which allows him to
choose individual tool most suited to a particular task. To
make these tools work together our informant writes scripts
which contain configuration settings, convert to appropriate
data formats and execute other tools. These personal scripts
allow our informant to orchestrate these tools for multiple
different analyses. Scripts such as these were not mentioned
at all in the paper or the Methods and Materials section of
the paper. They do, however, appear to form a type of com-
parative advantage for our informant, who related being able
to perform—in a weekend—preliminary analyses which had
been out of reach of his lab prior to his arrival.

Our informant held it as axiomatic that a paper, in the meth-
ods and materials section, should provide sufficient detail
for its replication. However, he considered it only a limited
responsibility to assist anyone attempting such a replication;
they must “do their homework.” He did not consider it likely
or appropriate for readers, or even reviewers, to seek access
to his personal scripts. He considered these scripts to be

7



Supporting Service
Commercial
Cooperative
Grant funded staff

Academic Credit
Incidental Software
Parallel Software practice
Computational sub-field

Hybrids
Dual-licensing
Collaboration Service Work

Table 1. Scientific Software Production Systems

quite different from other types of software. If he had written
a novel tool embodying a non-intuitive technique and used it
in a paper, he would feel responsible for releasing that.

The author trusts these scripts because he wrote them him-
self, they are simple workflows, and he constantly compares
their results to known scientific parameters; he argues that
he is easily able to see if the results are nonsensical.

DISCUSSION
The three cases above allow us to abstract a set of production
systems through which software used in science is created,
maintained and shared. These systems are primarily differ-
entiated by the rewards available and which act as incentives
to motivate activity. Each system has associated with it a
set of software engineering practices and produces software
with differing logics of correctness.

The link between practices and the incentives that motivate
them can be in a variety of configurations. Moreover these
configurations have strong effects on the production of soft-
ware in science. In some circumstances, we will argue, these
can be out of alignment and result in sub-optimal situations
for the production of software for science.

Software is a secondary player in the world of scientific
work, which is dominated by a reputation economy based on
substantive scientific publications. Figure 5 attempts to illus-
trate a much simplified archetypal scientific production sys-
tem. Research realized in publications is the core activity of
scientists. Research, of course, requires resources, realized
through salaries and, especially, grant funding. Unlike com-

Research PublicationResources Reputation

Citations

Feedback Link

Services

Figure 5. An archetypal simplification of the scientific reputation econ-
omy

mercial production the core activities do not directly result
in the resources, since publications are given away for free.
Obtaining resources, then, is indirect through reputation, and
the path from publication to reputation is direct and quick.
If the publications are useful to other researchers, then the
publication receives citations, boosting the reputation of the
authors. Publications do not need to be maintained as a sepa-
rately motivated activity. Providers of essential services and
equipment, from the perspective of the research economy,
stay very much in the background, perhaps rising to being
named in the acknowledgement section, or in the case of
scientific equipment suppliers, their product names perhaps
mentioned in the methods and materials appendix.

Software as Supporting Service
Some scientific software falls comfortably into the support-
ing service category. This software earns its keep essentially
outside the reputation economy of science. In our cases we
saw three different types of this kind of software. The first
is entirely commercial production, including packages such
as Mathematica or SAS and, from Case 3, Sequencher. The
second type was SBGrid from Case 2, where useful software
work is funded as a service by membership fees paid by con-
tribution or from grant money. The third covers the soft-
ware professionals employed by large collaborations seen
in Physics, those working full-time on software, rather that
“service work” (which is considered below).

Software produced as a support service is distinguished be-
cause they do not typically receive mention in academic ref-
erence lists, either because they do not publish academic pa-
pers or authors do not perceive them as requiring citation.
This was the case in our papers for Sequencher, SBGrid and
the ROOT4STAR framework.

Software for academic credit
The second major software production system identified in
this paper is unique to science: academic credit as incen-
tive. This breaks down into two types: the first is software
that is indirectly rewarded with academic credit since it fa-
cilitates science publications, the second is software released
for credit on its own which breaks into two types. The first is
building a parallel academic software practice. The second
is for a field to recognize software publications as scientific
publications in their own subfield.

Incidental software Some software is written purely to fa-
cilitate research. Examples from our cases include the anal-
ysis scripts from Case 1 and the power-user scripts from
Case 3. Their production and motivation is relatively un-
problematic: they are useful because they facilitate a specific
piece of research and worked on and adapted when (and if)
another specific piece of research calls for it. This type of
software is typically not made available for others to use, at
least not in any formal or on-going way. It might be archived
and provided to scientists interested in that paper on request,
but without the expectation that the software will require on-
going maintenance work by academics. This type of soft-
ware is typically written by individuals and evolves in the
context of the science project. Its logic of correctness is that

8



Research Topical
PublicationResources Reputation

Software Software
Publication

Software
Releases

Maintenance
Improvement

Software 
Support

Feedback Link

Topical
Citations

Use

Software
Citations

Figure 6. A depiction of the reputation incentives in a mixed science
and software academic practice

its author is close and knows it well, and that it performs
within expected scientific parameters. These scientific pa-
rameters in effect provide a type of informal software re-
quirements and iteration and discussion of results a type of
informal software testing. This is closest to Segal’s “profes-
sional end-user developers” category [14].

A parallel software practice Figure 6 shows the situation
facing many scientists who release software for others to use.
The top of this figure shows the same main feedback loop as
Figure 5: a flow from resources, to research, to publication.
Here the publication is referred to as topical indicating that
it addresses a research question in the scientists field. As
above there is a direct link from publication to reputation
and, over time, citations which increase reputation.

The bottom part of the figure shows what our interview sub-
jects referred to as “publishing on the software” describing
the software produced in the course of research in a separate
software publication. Such publications also directly result
in reputation, although it is perhaps a lesser or different form
of reputation. At worst it could be viewed as evidence of dis-
traction from the scientist’s main line of work. Nonetheless
whatever reputation is earned form the publication is direct.

Earning citations for software, however, is more circuitous.
Unlike topical scientific publications the software publica-
tion is rarely useful by itself; it is generally the software that
is useful to other scientists. The use of that software package
by others in the future garners citations to the software publi-
cation. In this figure this link is marked with a dashed line to
indicate that this linkage is more uncertain than regular pub-
lications. This is because the ethical requirement for citation
is less well established; not all users of scientific software
view it is required to cite the software, and not all software
packages make a convenient citation available. We believe
that it is possible that this results from authors viewing the
software as a support service, as in Figure 6 and assuming
that it is rewarded outside the reputation economy.

Making software useful for others is more complicated than
with topical publications or even dataset publications. Soft-
ware, even after being “published on,” must be released for
other’s use. Such sharing is costly. Effort must be made to
make the package generally useful and secure for release; in
Case 1 our informants told us that an open source require-
ment for internal collaboration code would require costly
security audits. Moreover, software requires maintenance
effort if it is to remain useful in a constantly changing infor-
mation technology environment. This would include, for ex-
ample, ensuring it continues to work with newer versions of
libraries that it uses, that it is capable of working with newer
data formats and so on. Such maintenance is not going to be
sufficient for a new software publication, but is necessary if
the software is going to continue to provide reputation pay-
offs. Finally, the authors may find that they have to provide
support to users. Software publications do not help much,
since they are quite different from user manuals. They typi-
cally do not comprehensively codify the knowledge required
to garner further use and further citations in the future. A
software release thus carries significant costs, but is likely
necessary to garner citations and draw reputation from an
active userbase.

In a very small number of cases, illustrated by BLAST
above, the software might become so important that these
responsibilities of maintenance and support are taken off the
author’s hands and become a responsibility of a software
professional, funded directly through science funding bod-
ies.

In this way a dual science and software practice is a complex
and questionable proposition for working scientists. Even if
the software is created in a way that is required for their topi-
cal publications (and thus its creation is no extra effort) if the
scientist seeks to build independent scientific reputation for
their software the path is complex and the additional effort
substantial. This additional effort takes time away from that
which could be invested in topical work where the payoff
is more clear. Finally there is the possibility that a scien-
tific software practice enhances topical scientific competi-
tors’ abilities in a way that reduces the comparative advan-
tage of the software’s author, further decreasing their ability
to earn topical reputation. In a reputation economy where
topical publications are king, this illustration makes the diffi-
culties of scientific software clear. With this incentive struc-
ture, it seems highly likely that sharing and maintenance of
software is likely to be under-resourced.

A software subfield The second production system associ-
ated with direct academic credit is the development of a soft-
ware subfield. This appears to be the case in computational
biology, where publications about software are viewed as
primary contributions. For example Carnegie Mellon Uni-
versity now has a Center for Computational Biology housed
in the School of Computer Science, illustrating the central-
ity of software to this field. This takes the archetypal flow of
science shown in Figure 5 and replicates it with software as
the research subject. The formation of departments with this
focus means that the institutional judges of reputation are

9



Research

Theory

PublicationResources Reputation

Citations

Feedback Link

Instrument
Data

Software

Figure 7. Depiction of changes to scientific reputation economy in large
Physics collaboration

appropriately aligned with the need for software contribu-
tion. Nonetheless the separation between a software publica-
tion and working software described for the parallel practice
persists. Software and algorithmic publications advance the
theory but someone has to maintain and support the working
software.

Hybrids
We also identified hybrids between the two major produc-
tion systems identified above. The first is a hybrid between
direct academic credit and commerical software production.
The second is a hybrid between cooperative support service
and indirect academic credit, seen in the large Physics col-
laborations of Case 1.

Dual-licensing Commerical/Academic hybrids place a foot
in the commercial economy and a foot in the academic rep-
utation economy. The Muscle author’s dual licensing direc-
tion in Case 3 illustrates this approach. Software licenses
can be written so that resources are gained directly from
commercial use, while academic publications and use gar-
ners citations and builds an academic profile. The commer-
cial resources cross-subsidize the academic requirements of
maintenance and support. Some of the commercial packages
considered above appear to have begun in this mode. This
is a well-aligned situation, generating financial resources for
costly releases, maintenance and support that also supports
academic use. However clearly this is only possible in areas
where there is commercial demand for the software and this
is not the case for much scientific software.

Collaboration Service Work Figure 7 illustrates the hy-
brid innovation represented by the physics collaborations
discussed in Case 1. Here the basic contours of the archety-
pal system remain unchanged, but the category of Research
is widened to include many more of the supporting activities,
including theory, the design, building, operation and main-
tenance of the data generating machines and the production
and maintenance of software. This includes software work
provided to the collaboration as part of the “service work
economy” described above. All of the collaboration mem-
bers are listed as authors, regardless of whether they worked
on that specific paper. At first brush then, this appears to
produce an appropriate alignment of incentives, with some
collective earning reputation and converting it to resources
available to all.

However, our interviews show that this arrangement pushes
the question of rewarding software work back inside the col-
laboration. Externally the collaborations maintain that all
contributions are equal and ought to be respected as such
by external institutions. This is not unproblematic as illus-
trated by an academic associated with the DZERO collabo-
ration: His university’s tenure requirements include printing
out copies of all papers on which one is an author. He dili-
gently compiled all the DZERO publications and submitted
them to the department secretary for printing and adding to
the tenure binder: over 2,000 pages later the printer had bro-
ken. It is unlikely that the regular tenure case process can
operate with these publications as evidence of contribution.

Our interviews confirm this: internally reputation is garnered
differentially and assigned informally, through recommen-
dations and visibility opportunities, such as opportunities
to present preliminary posters. In this process, our infor-
mants indicated that software work by scientists, as service
or towards papers, took a lower status position to instrument
building but especially to theoretic and empirical scientific
results.

Collaboration implications
The bifurcation between reputation for a software publica-
tion and citations derived from software use, shown in Fig-
ure 6, has potentially negative implications for direct collab-
oration on software between scientists. The authors of the
initial software publication are frozen in time at its publica-
tion. Contributions to maintenance and support by others,
while crucial for the software’s usefulness and citations, are
not rewarded by citations to the original paper. This means
that they are hard to turn into sources of academic credit for
the later collaborators; it is awkward to show on a resume or
argue at a tenure case that you should derive some portion of
the credit from citations to a paper on which you are not an
author.

Some projects approach this by releasing additional publi-
cations, adding authors who have made significant contri-
butions. However in order to have this paper published in
a adequately high status journal, those contributions would
have to be substantial. Regardless, users of the software may
continue to cite the original paper. Making matters worse, if
the contribution was significant enough for its own publica-
tion it is quite likely that the contributors would garner more
reputation from creating their own package and publishing
independently, as argued by the author of Muscle.

Another approach is to request that users cite “the software
project” directly, rather than a publication, listing the authors
and contributors in a separate, updatable location, similar to
open source projects where files such as THANKS maintain
contributor lists. This is awkward since such citations are
sometimes difficult to add to bibliographies and instead rel-
egated to footnotes. Even if they are added to bibliographies
since they are not publications they may not be considered
subjects for citation counts. Further, if a contributor arrives
later in the project it is awkward to make the case for the size
of the fraction of credit they ought to receive.

10



Given these issues it seems likely that significant software
contributions to existing scientific software projects are not
likely to be rewarded through the traditional reputation econ-
omy of science. Together these factors provide a reason to
expect the over-production of independent scientific soft-
ware packages, and the under-production of collaborative
projects in which later academics build on the work of earlier
ones.

CONCLUSION
Software is increasingly important to science. Modern sci-
entific results depend on a network of software created inside
and outside the direct context of the research. As opposed to
hardware enables of science, software provides unparalleled
opportunities to share and collaborate. Just as science results
stand on the shoulders of those who developed new methods,
validated instruments and theory, the software work in these
collaborations draws together the combined work of many
in the production of new science results.

This software is created in a variety of production systems,
as described in our Discussion. These systems have differing
alignments between the software, and software quality, ex-
pected from them and the rewards available within the sys-
tem. While some of these seem relatively unproblematic,
such as commercial production in fields with immediately
valuable applications, others appear problematic. In particu-
lar we highlighted the potentially pernicious implications of
the academic credit production system for collaboration and
maintenance.

REFERENCES
1. J. Carver, R. Kendall, S. Squires, and D. Post. Software

development environments for scientific and
engineering software: A series of case studies. In
Proceedings of the 29th International Conference on
Software Engineering, pages 550–559, Minneapolis,
May 23-25 2007.

2. J. N. Cummings and S. Kiesler. Collaborative Research
Across Disciplinary and Organizational Boundaries.
Social Studies of Science, 35(5):703–722, 2005.

3. T. A. Finholt and G. M. Olson. From laboratories to
collaboratories: A new organizational form for
scientific collaboration. Psychological Science,
8(1):28–36, 1997.

4. L. Hatton. How accurate is scientific software? IEEE
Transactions on Software Engineering,
20(10):785–797, 1994.

5. C. Hine. Databases as Scientific Instruments and Their
Role in the Ordering of Scientific Work. Social Studies
of Science, 36(2):269–298, 2006.

6. D. Kelly. A software chasm: Software engineering and
scientific computing. IEEE Software, 24(6):119–120,
2007.

7. K. Knorr-Cetina. The ethnographic study of science:
towards a constructivist interpretation of science. In

K. Knoor-Cetina and M. Mulkay, editors, Science
Observed, Beverly Hills, 1983. Sage.

8. K. A. Lawrence. Walking the tightrope: The balancing
acts of a large e- research project. Computer Supported
Cooperative Work, 15(4):385–411, 2006.

9. G. M. Olson, D. E. Atkins, R. Clauer, T. Finholt,
F. Jahanian, T. I. Killeen, A. Prakash, and
T. Weymouth. The upper atmospheric research
collaboratory (uarc). ACM Interactions, 5(4):48–55,
1998.

10. D. Ribes and T. A. Finholt. Planning infrastructure for
the long-term: Learning from cases in the natural
sciences. In Proceedings of the Third International
Conference on e-Social Science, Ann Arbor, MI, June
2007.

11. R. Sanders and D. Kelly. Dealing with risk in scientific
software development. IEEE Software, 25(4):21–28,
July-Aug. 2008.

12. J. Segal. Some problems of professional end user
developers. In Proc. IEEE Symp. Visual Languages and
Human-Centric Computing (Vlhcc 07), pages 111–118,
2007.

13. J. Segal. Models of scientific software development. In
Proc. 2008 Workshop Software Eng. in Computational
Science and Eng. (SecSe 08), 2008.

14. J. Segal. Software development cultures and
cooperation problems: A field study of the early stages
of development of software for a scientific community.
Computer Supported Cooperative Work (CSCW),
18(5):581–606, 12 2009.

11


	Introduction
	Background
	Three Cases
	Case 1: Large Physics Collaborations
	Identifying software involved

	Case 2: Structural Biology
	Identifying Software Involved

	Case 3: Micro-biology through Bioinformatics
	Identifying software involved

	Discussion
	Software as Supporting Service
	Software for academic credit
	Hybrids
	Collaboration implications

	Conclusion
	REFERENCES 

