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ABSTRACT 
Science policy makers are looking for approaches to 
increase the extent of collaboration in the production of 
scientific software, looking to open collaborations in open 
source software for inspiration.  We examine the software 
ecosystem surrounding BLAST, a key bioinformatics tool, 
identifying outside improvements and interviewing their 
authors. We find that academic credit is a powerful 
motivator for the production and revealing of 
improvements. Yet surprisingly, we also find that 
improvements motivated by academic credit are less likely 
to be integrated than those with other motivations, 
including financial gain. We argue that this is because 
integration makes it harder to see who has contributed what 
and thereby undermines the ability of reputation to function 
as a reward for collaboration. We consider how open source 
avoids these issues and conclude with policy approaches to 
promoting wider collaboration by addressing incentives for 
integration.  
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INTRODUCTION 
Software is ubiquitous in science. In current practice, 
scientific software originates in a diverse set of production 
systems that differ markedly in their incentive structures for 
creating, using, sharing, and enhancing software [7,18,24].  
A sea change is in progress, however, as science shifts 
toward cyberinfrastructure, offering to reduce duplicated 
effort and enhance large scale collaboration [3,9,33,43] 
both in science and in the production of scientific software.  
Science policy makers are seeking understanding of how 
best to shape the practice of science to enable this vision. 
An open collaboration approach has been successful in the 

production of open knowledge in Wikipedia and open 
source software [4,27,30]. Given the communitarian 
principles of science it is not surprising that open 
collaboration is a promising candidate [19,40,41].  

This paper examines openness as a road to more effective 
collaboration and co-creation of scientific software.  We 
report on results of an empirical study of the socio-technical 
structure of innovation around a central piece of 
infrastructural software, the Basic Local Alignment Search 
Tool (BLAST).  BLAST is arguably one of the most 
important pieces of scientific software ever written, to a 
large extent enabling the bioinformatics revolution.  By 
2003 the original paper describing the BLAST algorithm 
had become the third most cited paper of all time [38]. 

Understanding the shifting and sometimes conflicting 
incentives for sharing and collaboration in scientific 
software will deepen our understanding of coordinating 
collaborative work more broadly. This is because “the 
republic of science” [29] contrasts with environments 
where open collaboration has previously been examined.  
The contrast is especially clear in terms of overall incentive 
structure. Free revealing through publication, thereby 
building long-term academic reputation in science, 
contrasts both with the financial incentives common in for-
profit environments, as well as the combination of use-
value, learning and localized reputation motivating open-
source participation [e.g., 37]. By examining the effect of 
different kinds of incentives, this paper advances work on 
incentives in large-scale collaboration, a key theme of 
research in CSCW [e.g., 21]. 

BACKGROUND 

Studies of software work in science/infrastructure 
Research in CSCW has recognized the importance of “the 
human infrastructure of cyberinfrastructure” [25], including 
the environment in which those producing cyber-
infrastructure work. Researchers have, for example, 
identified a tension between the academic research goals of 
computer scientists and the implementation oriented needs 
of domain scientists [14,23] and the need to “synergize” 
efforts in production of cyberinfrastructure tools, especially 
in shifting, dynamic funding environments [7]. In the 
related area of data, research has shown how differential 
valuations of data in different scientific fields result in 
varying incentives, which are key to understanding data-
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sharing practices in different scientific fields [43]. 
Recognizing academic publication as a primary motivation 
is key to understanding the challenges of collaborative 
production of scientific software [18]. Perhaps glossing 
over these distinctive academic incentives, many have 
pointed to the success of open source software development 
and argued that it provides a model for sustainability of 
software development in science [1,15,20,41]. 

Incentives in Peer Production 
Incentives for participating in open source software projects 
have long been a subject of study.  Expending effort for no 
pecuniary return was initially seen as a puzzle, explained in 
early literature in fairly idealistic terms, as supporting a 
form of freedom of expression [39], in terms of use value  
or “scratching one’s itch” [36], or as symptomatic of a “gift 
economy” [36]. As academic attention turned to the 
question of incentives, focus began to center on the desire 
for reputation, for example, as a labor market signal [26] 
that might lead to a better salary.  Surveys identified a 
complicated mix of incentives, including the desire to build 
a skill, share technical knowledge, and participate in a new 
form of cooperation [16,22].  Studies looking at the larger 
incentive picture have shown a complicated mix of 
intrinsic, extrinsic, and use value motivations, with various 
effects on developers’ output [37]. Increasingly, open 
source developers often participate as paid employees of 
commercial firms, who invest in open source for 
commercial reasons [45]. Recent work has argued that there 
can be separate and different incentives for different 
elements of open source work such as production of code, 
revealing code and integrating code back into the shared 
source tree [5]. In a similar vein, other recent work has 
shown varying incentives for joining, contributing to, and 
becoming committed to online communities more generally 
[21]. 

As the novelty of open source software development has 
worn off, and as the commercial and open source worlds 
continue to intermingle, reputation seems to have 
reemerged as a primary motivation, as new environments 
make it increasingly easy to observe and evaluate others’ 
work and popularity. For example, the number of  
“followers” a developer has is viewed as a signal of status 
in GitHub [13]. Indeed, online reputation accounting 
systems have emerged (e.g., Masterbranch.com and 
Coderwall.com) making reputation even more visible and 
explicit. 

Recent work in scientific software has also shown a 
complicated mix of incentives in which reputation features 
prominently [18]. Yet in the scientific world there is the 
added twist that scientists, who write most of their software 
themselves, tend to be motivated by scientific reputation, 
not reputation in the software world. A physicist writing 
software gets little or no reputational credit unless the 
software enables physics work that enhances one’s 
reputation as a physicist. This shift—working in one 

domain (software) while experiencing reputation incentives 
in another (science)—can produce mismatches [18], and 
may lead to patterns of activity that do not accord with 
those observed in non-scientific contexts.  Moreover, these 
mismatches may lead to situations that do not serve the 
software needs of scientific communities well and provide 
difficulties for the vision of shared and communally-
developed software infrastructure driven by open peer 
production. 

A study of the BLAST innovation system 
To explore these issues we studied the development and 
improvement of BLAST [2]. BLAST is an important piece 
of scientific infrastructure, realized in software code, which 
performs the lookup of primary biological sequences, 
including DNA and higher-level sequences including amino 
acids that make up proteins.  These sequences are matched 
against annotated databases, especially GenBank, returning 
similar sequences based on appropriate statistics. These 
lookups facilitate scientific results including the 
identification of organisms, assessing gene function and 
structure and, in combination with other tools, analyzing 
their likely evolutionary origins.  

Our specific research questions are the following:  

1. Who created, maintains and improves BLAST?  

2. What code was integrated with BLAST? 

3. What motivates the creation, release and 
integration of improvements to BLAST?  

Data and Analysis method 
The results discussed below are based on an analysis of 
semi-structured interviews and inspection of published 
literature. We identified those involved with BLAST 
through a combination of searching in the published 
scientific literature, internet searches for versions of 
BLAST, and through asking each interviewee to identify 
participants and provide feedback on our searching strategy. 
Conscious of the possibility of selection bias due to 
examining the published literature we specifically asked 
each interviewee if they were aware of unpublished BLAST 
versions (discussed below). 

We conducted interviews with informants who were well-
placed to provide insight into the origins of improvements 
to BLAST and to explain their motivations in undertaking 
their work. The interviews were semi-structured using a 
protocol with three sections: the background of the 
interviewee and the relevant project, the source and nature 
of the BLAST innovation and motivations for the 
interviewee’s software work, including how they make their 
case for impact. We sought permission to record the 
interviews for research purposes and all but one participant 
agreed. One interview was conducted face to face; the 
remaining interviews were conducted over the phone. 
Overall we conducted seven interviews with eight 
informants, representing seven cases of BLAST 
improvements. We identified four other improvements of 
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BLAST through literature and web-searches but our 
requests for interviews went unanswered. In these cases we 
have examined published papers and respective websites 
(where these exist).   

For all interviews we made contemporaneous notes and 
developed summary memos immediately afterwards. We 
then developed near transcripts of the interviews and 
expanded our memos. Simultaneously we were returning to 
the research literature and we met periodically to discuss 
the interviews in light of this literature. In this way we 
developed systematic analysis artifacts focusing on 
organizing the cases according to their incentives for 
different activities. These are summarized following each 
case and together in the discussion. As our results 
developed we actively sought alternative explanations, 
challenging our emerging understanding. These alternative 
explanations, together with the rich case narratives, provide 
transparency into our analysis, allowing readers to see and 
judge the logic by which we arrive at our conclusions. 

In the remainder of the paper we first report qualitative 
narratives of cases of BLAST improvement, then 
summarize motivations across the cases at each stage 
(development, revealing and integration). In the discussion 
that follows we consider alternative explanations of these 
findings (generality of solutions, integration costs, 
intentions and incentives) in their best possible light.  We 
argue that one explanation, based on incentives, is most 
consistent. We then consider the theoretical and practical 
implications of that explanation. 

RESULTS 

NCBI BLAST 
BLAST was conceived as an algorithm and piece of 
software by a small group of academics at the National 
Center for Biotechnology Information (NCBI) together with 
a tenure-track biologist at Penn State and a tenure-track 
computer scientist at the University of Arizona. The NCBI 
was funded by the National Library of Medicine, an 
Institute of the National Institutes of Health, and managed 
the GenBank DNA database.  The software continues to be 
developed and maintained primarily by employees of NCBI 
most of whom have PhD backgrounds in Mathematics, 
Computer Science and Biology. They have shifted career 
tracks to software work in the service of science, but 
participation in science remains an important element of 
their professional identity (as opposed to an identity as 
software developers who incidentally work in a science 
domain). 

Our interviews revealed that the creation of BLAST was 
motivated by a combination of use value (for the working 
biologists in the group) and academic credit (all authors 
sought to publish to build academic reputation). Ongoing 
maintenance is motivated as a service project for science. 
The developers of BLAST expressed interest in following 
the improvements of BLAST created outside of NCBI, and 

have integrated some outside contributions (see below) but 
have not sought explicitly to encourage the development of 
BLAST as a community project. 

BLAST+ 
BLAST+ is a complete rewrite of BLAST by the core 
BLAST team at NCBI. It was released in 2009 and 
described in a contemporaneous academic publication [10].  
The paper argues that the inclusion of new features over 
time had undermined the BLAST source code: “the 
continual addition of unforeseen modifications made the 
BLAST code fragile and difficult to maintain.” [10] The 
primary goal of the rewrite was that, “the code structure 
should be modular enough to allow easy modification.” In 
addition the re-write process enabled the NCBI authors to 
add features, including some that had been demonstrated by 
external improvements and provided by forked code 
versions hosted outside NCBI for some time (FSA-BLAST 
and MegaBLAST). The BLAST+ codebase provides 
substantial improvements to most, but not all, BLAST 
operations and is now the primary non-historical version of 
BLAST available from NCBI. 

The authors of BLAST+ were motivated by use-value, 
although it was a different use-value than the use-value 
indicated by working biologists.  The use-value here was to 
make the NCBI’s overall task of service provision to the 
bio-informatics community more efficient and effective.  
The production of an academic publication to describe the 
code was primarily justified as the appropriate way to 
announce and document the new code, but since the NCBI 
operates in a quasi-academic environment there was a 
secondary motivation of academic credit associated with 
the article publication.   

WU-BLAST   
BLAST, as originally released, lacked the ability to conduct 
searches with gaps in the sequence. WU-BLAST was the 
first package to provide a “gapped” BLAST. Its author had 
originally been employed at NCBI to work on NCBI 
BLAST after having been recruited out of a programmer-
analyst position at UC Berkeley.  Seeking a more academic 
track, he left NCBI for a tenure-track biology position at 
Washington University in St. Louis where he intended to 
continue to improve BLAST as well as use it to analyze 
data produced by the WU Genome Sequencing Center. 
WU-BLAST was maintained as a separate project with 
performance that earned it a loyal user base. Some of the 
features WU-BLAST introduced, including gapped 
searches, found their way into NCBI BLAST, although 
source code was never integrated. The author recently 
renamed the project AB-BLAST, forming a company and 
selling commercial licenses. 

Digital/Compaq BLAST 

As was common with hardware companies at the time, 
DEC maintained a vertical technical marketing group 
whose focus was to ensure that software relevant to their 
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market segment ran smoothly on their specific hardware.  In 
1999, Compaq acquired DEC but the Alpha business 
continued to run as it had under DEC. Our informant was a 
member of a technical marketing group. In the course of his 
work, he increasingly encountered potential and current 
clients engaging in sequence analysis.  To serve this group 
the technical marketing group collaborated with an 
engineering group within the old DEC structure that had 
created an enhanced version of BLAST based on the NCBI 
code. The technical marketing group used that version to 
generate benchmarks showing the improved performance of 
the Alpha platform in running BLAST. These benchmarks, 
and the software improvements, were used to “sell 
hardware.” Our informant argued that, from the perspective 
of DEC Compaq the incentives for development and 
maintenance were financial: they gained access to a market 
segment and sought to increase their income. 

It was common practice at the time for DEC to provide 
enhancements to the originators of the software. Our 
informant indicated that this was important for two reasons: 
first it ensured that DEC was no longer responsible for 
maintaining a forked codebase as the software’s original 
authors improved their code.  Second, customers were 
“more confident” obtaining and using code provided by 
original authors. In the case of BLAST that meant 
customers preferred to use NCBI BLAST.  In keeping with 
this practice DEC/Compaq reached out to NCBI and 
worked with them to integrate their enhancements into the 
mainline NCBI tree; NCBI acknowledges this contribution 
in the paper that describes BLAST+ [12].  

Mac OS X port 
In the late 1990s and early 2000s Apple transitioned to a 
Unix based operating system, known as Mac OS X. NCBI 
BLAST was ported to Mac OS X primarily by our 
informant. Our informant held a PhD in biology and on 
graduation had asked “what does a person do that enjoys 
biology and computers at the same time?” The majority of 
sequencing work at his workplace was done on DEC Alpha 
workstations that remained in the office and doubled as 
developer machines.  Our informant, however, preferred to 
work on his Apple laptop. Yet the majority of the emerging 
bioinformatics tools at the time did not compile for Mac OS 
X out of the box, leading our informant to use time during 
his 1 hour daily train commute to port these applications. 
He thus became active in a community of like-minded 
enthusiasts who ported relevant applications.  

Apple provided support to the porting community, 
including trips to Apple HQ in Cupertino and Apple 
computers. Documents show that Apple was planning to 
release their Xserve rack-mounted server and increasingly 
saw life sciences as an important market, both in academia 
and in industry.1  

                                                             
1 Stewart (2001) “Bioinformatics meets OS X” O’Reilly Media. 
http://oreilly.com/pub/a/mac/2001/12/14/macbio.html 

Our informant maintained the Mac OS X port for a year or 
two, providing binaries via FTP. Apple also distributed 
these binaries on DVD images at life sciences computing 
conferences to ensure that their customers had access to the 
code that worked on their hardware. Our informant 
expected that the projects he ported would integrate his 
changes, because he wanted to have impact and to reduce 
the support workload of making them available and 
updating them. He found himself “doctoring” each new 
release of BLAST from NCBI, sending his changes to an 
NCBI contact that he was introduced to by Apple, who also 
wanted the port integrated. Eventually he stopped being 
asked for the code and found his port had been incorporated 
in mainline NCBI BLAST, as part of the interaction 
between Apple and NCBI described below.   

A/G BLAST 
A/G BLAST was developed by Apple Computer in 
conjunction with Genentech, a life sciences company, as a 
lead user and collaborator. A/G BLAST was optimized by 
Apple to run on the G4 PowerPC chip, which included a 
proprietary "Velocity Engine" called "Altivec". As with 
DEC/Compaq, many of the improvements were not specific 
to Apple chips, but Apple emphasized the role of their 
proprietary chips in marketing materials.   

Development of this BLAST improvement was thus 
motivated by complementary goods sales, i.e., making the 
software available in order to facilitate hardware sales.  
They hoped to ensure that the G4 chip with its Velocity 
Engine was used to its potential for this application. In the 
words of a contemporaneous press release introducing A/G 
BLAST Apple extolls the virtues of their hardware for 
science in a section entitled, “Velocity Engine and Mac OS 
X: The Ultimate Science Platform.”2 A/G BLAST was 
touted as superior, able to deliver “five times the 
performance of the nearest competing desktop system 
running standard NCBI BLAST.” 2   

The source code for A/G BLAST was freely revealed and 
made available through Apple’s websites as well as 
distributed at life science conferences. In a manner similar 
to the Digital/Compaq Alpha port, because the code only 
ran on Apple’s hardware there was no effort to restrict the 
availability of this code. Moreover at the time Apple had a 
strategic push towards open source software and the open 
source community. The relevant group at Apple did publish 
academic papers from time to time, but did not publish a 
paper describing A/G Blast, nor otherwise attempt to earn 
academic credit for the improvements in A/G Blast. Rather 
Apple made the code available on an Apple-branded 
website and publicizing through press releases and 
presentations at industry venues, such as sites and 
conferences organized by O’Reilly Media.3  

                                                             
2 http://www.apple.com/pr/library/2002/feb/07blast.html 
3 Originally hosted at 
http://developer.apple.com/hardware/ve/acgresearch.html and as of May 
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Apple sought to have its improvements moved back to the 
NCBI BLAST, which was, for Apple’s customers, easier to 
justify using in academic papers. Moreover the A/G 
optimizations could be better kept in sync with the ongoing 
development of NCBI BLAST, reducing effort for Apple’s 
programmers and ensuring that new features from NCBI 
were available to purchasers of the G4 Apple Hardware.  
The NCBI BLAST team initially became aware of A/G 
BLAST through publicity associated with the O’Reilly 
Bioinformatics conference and was eventually invited to 
Cupertino where engineers described the Velocity Engine 
and other optimizations.  NCBI ported these to their main 
source tree soon afterwards. As with Compaq’s 
contributions NCBI acknowledges Apple’s contributions in 
their BLAST+ publication [12].  

GPU-BLAST  
GPU-BLAST is an effort to exploit the parallelism 
available in modern GPU platforms, specifically the 
NVIDIA GPU [44].  It was developed by two academics 
whose focus is primarily on computational optimization, 
and neither considers themselves biologists or bio-
informaticians. Whereas previous attempts to implement 
BLAST on GPU hardware have provided significant speed-
ups under some conditions they have not provided identical 
results; GPU-BLAST ensures an exact results match with 
mainline BLAST.  

GPU-BLAST, unlike other BLAST improvements 
considered in this paper, was built on the re-modularized 
BLAST+ codebase. The GPU-BLAST authors indicated 
that the BLAST+ code was very well written and was 
relatively easy to modify. They indicated that they only 
needed the code itself and did not rely on documentation 
nor seek help from NCBI. Nonetheless they did not see that 
as a reason to base their work on the BLAST+ codebase, 
arguing that the original BLAST code was also well-written 
and easy for their modifications. They chose to base their 
work on BLAST+ to be up to date, rather than seeking to 
exploit the more modular and easier to integrate structure of 
the codebase. The authors moved quickly to publish a 
description of GPU-BLAST in the academic literature.  As 
part of that publication they made their source code 
available, hosting GPU-BLAST on their own website. That 
website is very specific about their expectation that users 
would provide academic credit through citations to their 
publication: “Please cite the authors in any work or product 
based on this material.”  

The software is also promoted by the NVIDIA’s GPU 
platform developer’s program as part of a bioinformatics 
distribution.  NVIDIA found the GPU-BLAST software as 
they prepared a bid to sell hardware to a large hospital and 

                                                                                                      

2011 still available at 
http://developer.apple.com/opensource/tools/blast.html, although 
optimizations were eventually integrated into NCBI BLAST. See 
http://www.apple.com/pr/library/2002/feb/07blast.html and 
http://www.xml.com/pub/r/1327 

added it to this collection. Following this NVIDIA donated 
“a few cards” to the GPU-BLAST authors, much as DEC 
and Apple had before them. Other than this post-hoc 
donation GPU-BLAST authors receive no royalties or 
financial benefits from their code. 

Other Improvements 
We identified four additional improvements for which we 
were unable to obtain interviews: commercial internal 
improvements, and three improvements described in 
academic publications (CUDA-BLAST, FSA-BLAST and 
CS-BLAST). Multiple informants indicated that they 
believed that commercial users of BLAST had internal 
improvements which they did not release publicly, while 
our informants did not have specific inside knowledge they 
indicated their belief that these were motivated by financial 
incentives in that they provided competitive advantage to 
the firms. 

Improvements in the second group were found through 
literature searching but we were not able to interview the 
authors.  In each case the code was released simultaneously 
with publication through the author’s own websites. 
Although not as reliable as reasoning based on interview 
data, we infer a desire to obtain academic credit from the 
authors undertaking publication of these articles.  In the two 
older cases the code is no longer available at the links 
provided. However, as with the “gapped” improvement in 
WU-BLAST the core NCBI team has incorporated the 
ideas, but not the source code, of those publications. 

Summary of motivations 

Our informants discussed their motivations for the three 
activities of development, revealing and integration. 

Development was motivated by a range of motivations. One 
driver was use value: the improvement was necessary to 
support work that the informant wished to undertake. 
Another driver was seeking academic credit: by developing 
an improvement that would be useful to the academic 
community informants hoped to receive reputational 
rewards that would advance their careers, including seeking 
tenure and promotion. Academic credit could be earned 
through improvements to the usefulness of BLAST, but 
also more general contributions, such as novel optimization 
techniques. In one case development was motivated 
because it was simply a fun and enjoyable activity (“there 
was no credit that I was competing for”). Finally, one group 
of improvements was motivated by a desire to sell 
complementary goods and thus increase revenue: if BLAST 
performed better on particular hardware then customers 
would be more likely to buy that hardware. 

Revealing is the action of sharing the code with others. 
While one informant argued that they were ethically bound 
to reveal code, the other informants argued that revealing 
was crucial to access the benefits that had motivated 
development. This was true for those motivated by 
academic credit: getting the software to users, even if just in 
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binary form, is crucial to receiving academic credit and, 
given the norms of academia, source code revealing is usual 
(despite the possibilities it offers to competitors). For those 
seeking revenue through complementary goods, revealing 
was also necessary. The software already ran and was 
available on competing computing platforms; the 
optimizations were given away to enhance the perceived 
value of buying particular hardware; informants indicated 
that the code was released “via PR [public relations].” 

Integration involves merging an improvement with the 
mainline BLAST. While any improvement could be made 
available, only integrated improvements would be 
distributed by NCBI. Integration also implied that NCBI 
would undertake to maintain the improvement going 
forward, accepting it into the scope of the service that they 
provide their community. For one group of informants these 
were both positive motivations to have their code 
integrated. By integrating their customers could have the 
knowledge that they were working with “the real BLAST” 
making them more comfortable with the correctness and 
acceptability of the results. While it was good for hardware 
sales to have an optimized code version, it was even better 
to have mainline BLAST optimized. Once the code was 
integrated, however, any on-going work, such as 
synchronizing with new versions, was a cost; if this could 
be borne by the BLAST developers that would increase net 
revenue.  

For another group, however, while reduced costs of 
maintenance from integration would be welcome (NCBI 
BLAST was the “industry standard”), that benefit did not 
outweigh the perceived cost of integration. The question of 
who would receive credit for the combined artifact was key, 
either from direct ongoing use of the software or through 
academic publishing and citation. Since users would be 
citing a paper in their academic work, some informants 
expected that users would continue to cite the “original” 
BLAST paper, rather than the new publication of the 
improver. While the possibility of a joint publication was 
enticing, in one case it was suggested in our interview that 
there was a concern that the original BLAST authors would 
not benefit from creating a new publication that would 
undermine the citation of their existing papers. 

RESULTS SUMMARY  
As our cases proceeded we created systematic analysis 
artifacts that summarized our answers to our second and 
third questions: Was the code integrated? And, what 
motivated development, release and integration (if it 
occurred)? These artifacts bring our results together in a 
systematic manner and we present them in this section. 

NCBI BLAST

WU-BLAST

BLAST+

GPU-
BLAST

CUDA-
BLAST

CS-BLAST

Mac OS X Port

DEC/Compaq 
BLAST

Apple (A/G) 
BLAST

FSA-BLAST

Improvements
branch and return
(code integrated)

Improvements 
branch but do not return 

(code not integrated)

Time runs from left to 
right, but is approximate 

and illustrative only  

Figure 1: Forking and integration in the BLAST software ecosystem 

Figure 1 summarizes the branching structure of the BLAST 
improvements we studied. At the core is NCBI-BLAST, 
transitioning to BLAST+. We found all improvements to be 
based on this line of code. Thus we found all our improvers 
sought to base their improvements on the core NCBI 
distribution, and to do so on whichever version was most up 
to date, transitioning from BLAST to BLAST+ when the 
NCBI did. 

The path of these improvements can be divided into two 
basic structures: those that branch and return, being 
integrated with the NCBI code (shown above NCBI 
BLAST in light gray) and those that branch but whose code 
is not integrated (shown below NCBI BLAST in dark gray).  
Those that were not integrated were maintained separately 
for some time by their authors, typically having them 
available on personal websites. Our informants indicated 
that they intended to make their versions available and 
update them to be in sync with new versions from NCBI, 
but they were not sure how long they would do so; we 
found that forks tended to be maintained for relatively short 
periods of time and their authors, rather than announcing an 
end to the project appear to simply stop updating their 
websites. 

What can explain the differences in whether the 
improvements had their source code integrated?  Through 
our analysis we developed four competing explanations: 
generalizability, integration costs, intentions and 
motivational conflicts. 

Generalizability. The providers of a popular distribution 
may not want to increase the size and complexity of the 
distribution unless some large fraction of users will benefit.   

Improvements may be too specific to be generally useful., 
so including every improvement would complicate the 
codebase too much for too little gain.  This provides a 
content-based explanation for our observed pattern:  
improvements that were generally useful would be 
integrated, while more specific improvements would not.  
Certainly the commercially motivated computing platform 
based improvements, which were all integrated, fit with this 
explanation: all uses, if not all users, of BLAST could 
benefit from a port to Mac OS X or enhancements by, 



Collaboration and Sharing in Scientific Work                      February 23–27, 2013, San Antonio, TX, USA 

 465

DEC/Compaq or Apple/Genentech. However there are 
quite general improvements in the cases where the code 
was not integrated, including gapped BLAST from WU-
BLAST, the improvements in CS and FSA BLAST and the 
code from GPU-BLAST.  Thus a content-based generality 
does not provide a consistent explanation for the observed 
patterns, nor was it emphasized by our informants.  

Integration costs. It takes technical effort—sometimes a 
great deal of technical effort—to integrate new 
functionality into a large, complex piece of software, and to 
maintain it over time.    

A plausible explanation for why some outside 
improvements came to be integrated while others did not is 
that some simply required more effort to integrate and were 
thus either not considered worthwhile or the improvement 
was incorporated by writing code from scratch. Code 
written by others can be impenetrable and it can be difficult 
to isolate the useful improvements. One key cause of high 
integration costs is related to the modularity of the 
codebase. The more modular a codebase is the lower 
integration costs should be [4]. Our informants indicated 
that the original BLAST codebase was fairly monolithic 
and that the BLAST+ codebase was clearly more modular 
(as intended by its authors). This explanation would thus 
predict that code based on BLAST would be less likely to 
be integrated than code based on BLAST+. Admittedly we 
have only one case of code based on BLAST+, but we have 
more cases based on BLAST. In neither condition, 
however, does this explanation appear to explain the 
observed patterns, in fact the opposite holds. All the cases 
of integrated code were originally based on BLAST, while 
the case based on BLAST+ was not integrated. If the 
integration costs explanation held this pattern should have 
been reversed.  Given the small number of cases here, in 
our opinion it is more telling that our informants did not 
emphasize this explanation, focusing far more on 
maintenance costs than on integration costs. Either way 
integration costs does not seem a sufficient explanation.  

Intentions. Improvements were integrated unless their 
creator did not intend to have them integrated. 

The simplest explanation would be that the authors, as 
copyright holders, did not want their code integrated. 
However, in most cases the outside contributor clearly 
expressed a desire to re-integrate their contributions with 
NCBI-BLAST, acknowledging both the on-going 
maintenance costs of branches and that potential users 
strongly preferred to use “real BLAST” whenever possible.  
Nonetheless for those that were not integrated any desire to 
integrate was clearly conditional on how integration would 
occur, turning on the question of whether and how future 
users would acknowledge the outside contributions, as 
illustrated in this quote: "the ideal … would be that NCBI 
[agrees to] write another paper and have them cite this from 
now on ... that would be the ideal..." The last sentence was 
inflected in such a way that indicated that such an 

undertaking might not be ideal for both sides. Thus the 
authors intentions explanation appears consistent but 
merely asks a deeper question: why did different authors 
place different conditions on their desire to integrate? To 
answer that we turn to our data on incentives. 

 

Motivational conflicts. The form of motivational rewards 
that participants seek may mean that conditions under 
which integration would be mutually beneficial are difficult 
to achieve. Specifically, the requirements to access 
academic credit undermine the incentive to integrate, 
resulting in the maintenance of separate codebases. 

Table 1 combines of our findings regarding integration and 
incentives: the cases are grouped and shaded according to 
their code integration status (as in Figure 1), light gray 
showing those that were integrated and dark gray those that 
were not. The cells indicate our findings regarding 
incentives for the three different elements of participation in 
open collaboration [5]. 

There is a clear association between integration and 
incentives: those improvements that were not integrated 
were motivated in development and revealing by academic 
credit; those that were integrated were motivated in 
development and revealing by a mix of motivations, but in 
integration by a combination of reducing effort and earning 
revenue through sales of complementary goods. 

In essence we found that BLAST innovations from those 
motivated to improve BLAST by academic reputation are 
motivated to develop and to reveal, but not to integrate their 
contributions. Either integration is actively avoided to 
maintain a separate academic reputation or it is highly 
conditioned on whether or not publications on which they 
are authors will receive visibility and citation.   

Conversely, other motivations (including use-value, fun, 
ethics, as well as complementary goods) do not seem to 
conflict with integration. In fact these motivational rewards 
seem to be consistent with or actively favor integration, 
either as a means to reduce on-going maintenance costs or, 
in the case of complementary goods, to ensure the highest 
level of comfort using the BLAST improvement that helps 
sell particular hardware. 

We find this explanation to be the strongest: academic 
reputation as a motivational reward creates conditions that 
are difficult to satisfy in a mutually beneficial manner, 
while other motivations do not. This explanation is 
consistent with all our cases and it was key to the 
explanations that informants themselves provided. 

DISCUSSION 
Our result is surprising because reputation has been seen as 
a key and unproblematic incentive for participation in open 
software development, as discussed above [e.g., 5,26,37].  
Similarly a reputation economy is key to science, with some 
authors going as far as to describe a separate “republic of 
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science” where reputation and building on each other’s 
work replaces the dominance of competition for money in 
other domains [30]. This raises two questions: First, why 
does reputation appear to be problematic in the production 
of scientific software, while use-value, fun, learning and 
even money appear to encourage open collaboration? 
Second, why does reputation appear problematic for 
integration in scientific work but not in open source?  

We explore possible answers to these questions by 
examining how different incentives, in content and form, 
relate to collaboration by using a division of claims 
approach [5].  The division of claims approach posits that a 
fundamental issue in collaboration is answering the 
question of how the overall value resulting from 
collaboration is distributed amongst those who have 
contributed. To the extent that that division results in 
adequate rewards for participants then collaboration will be 
possible; if that division is not satisfactory collaboration 
will be threatened.  

Fun and learning. A number of the incentives discussed 
above have rewards that are independent of the overall 
performance of the system because they are delivered 
immediately.  The fun and learning as a motivation was 
experienced in the activity itself and existed whether the 
code was integrated and the overall project improved or not. 
Thus the rewards of these type of motivations don’t have to 
be divided or transferred to other participants and such 
motivations are particularly well-suited for open 
collaboration. 

Use-value. The desire of the authors to use their own 
improvements is an important motivation. This is well 
known from studies of open source software where 
developers indicate that they participate to improve the 
software for their own use [12,37]. In science, use-value 
derives from one’s ability to accomplish (non-software or 
domain) scientific work that will eventually be published in 
an academic paper. This type of software has been called 

“incidental software production” [18] and is clearly 
powerful for motivating development. It may not, however, 
be necessary to reveal developments because not doing so 
may preserve a competitive advantage.  In this sense 
revealing may cause a reduction in the relative value of the 
use-value to the original author.  In science, however, 
revealing may be a complement to the use-value of 
development work to the extent that norms of openness and 
reproducibility (or explicit journal/conference policies) 
require the full revealing of code in order to publish results 
based on it (and thus unlock the scientific use value of the 
software work). Integration, however, appears unlikely to 
be a complement to use-value (since journals require only 
revealing and not integration) and so the decision about 
integration is likely to be based on a separate assessment of 
on-going costs of maintaining a separate code tree. 

Money. Money is a quintessential motivational reward in 
part because it facilitates a division of claims easily. This is 
clear in the simple case of for-profit collaboration. If two 
partners work together to create a valuable system and earn 
money by selling it they can divide that money in a way 
that provides sufficient reward to each of them.4 Revenue 
from complementary goods sales, as observed above, is 
more complex but is still a division of claims facilitated by 
money. In this case the overall value from the improved 
system is sufficient to generate demand for computers to 
use the software with.  If the software was also sold for 
money it would be clear that the customer’s money was 
being divided between hardware and software contributors. 
Money is ideal for valuing and rewarding contributions 
since it can be divided and distributed easily. 

Reputation. Reputation, by contrast, is potentially 
problematic when viewed through a division of claims 
framework. Reputation is something that is enacted by 

                                                             
4 Of course any division is likely a result of power and other strategies but 
the simple divisibility of money facilitates these strategies. 

Project Motivation for … 

 Development Revealing Integration 

Integrated Improvements Revenue (sales) 
Fun 

Revenue (sales) 
Ethics 

Integrated: 
 - Reduce maintenance costs 
 - Increase Revenue (sales) 
 

NCBI BLAST 
NCBI BLAST+ 

Academic Credit 
Use Value 
Academic Service Provision 

Academic Service Provision 
 

N/A 

Non-integrated 
improvements 

Academic Credit 
 

Academic Credit 
 

Not integrated:  
 - Counter-motivated or highly 
conditional due to concerns that 
integration would undermine 
academic credit 

Table 1: Integration status and motivations for development, revealing and integration (shading refers to Figure 1). 
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others through their future actions, especially the extent to 
which they reveal their regard to others. In the context of 
BLAST, reputation is an anticipated reward for the 
development and revealing of software improvements. The 
improvers anticipate that others will come to value the 
improvements and therefore regard the improver as a 
contributor to science. Such regard is useful for career 
advancement, especially in terms of tenure and respect that 
leads to jobs, grants and other rewards. 
As a motivational reward reputation is not delivered 
immediately like fun or learning, nor independently like 
use-value. Rather the value of reputation comes over time 
and at distance. The fact that reputation is enacted by others 
means that it is hard to control, just as it is hard to control 
any actions of others. This is a very strong contrast to 
financial rewards because once money is received it can be 
stored, re-directed and divided. In contrast a partner whose 
rewards come as reputation must work hard to cause the 
valuable reputation to be redirected or divided, perhaps 
even to the extent of correcting others each and every time 
they do not adequately divide their regard appropriately 
amongst contributors. 

The division of reputation is easier to the extent that each 
individual’s contribution is clearly marked in the final 
product, making a user (or an evaluator) perceive the 
multiple contributors. When that is the case integration does 
not diminish reputational reward, and in fact may enhance it 
by virtue of its inclusion in a more highly-functional 
product (as with the expected reputation benefit of having 
one’s code included in “real BLAST”). Yet where 
individual contributions are not visible in the final product, 
there exists a risk that contributions may be undervalued. 
Concern over this issue has been seen in sciences with ever-
increasing large author lists [8]. 

More concretely, integrating a piece of code into an existing 
project risks losing the identity and visibility of that 
contribution, a concern voiced by an informant that 
“improvements would be consumed”. If the existing project 
is already firmly associated with its originators, then there 
is considerable, difficult work to be done to alter the 
behavior of future users in order to have them recognize the 
contributions of those whose contributions have been 
incorporated. 

Reputation in open source and science 
In open source the issues with reputation and collaboration 
discussed above seem less problematic than in the academic 
reputation economy. We see two reasons for this.  

The first is that open source projects, and the systems they 
use, provide insight into the specific, sub-project, 
contributions of contributors.  This can be seen in the use of 
THANKS files, listing the names of contributors, but even 
more clearly in the source code management systems where 
contributions are identified by name, allowing a view of 
contribution that is disaggregated from the project level. In 

this way systems like Coderwall can “reach into” integrated 
products and provide an accounting of contribution in a 
way that accomplishes a division of claims. Scientific 
software projects rarely have open repositories that indicate 
authorship, in BLAST any integrations were performed by 
core staff under their usernames, not by the author whose 
code or idea was integrated. 

The second is that reputation is more direct in open source 
than in the academic reputation system.  In short reputation 
in academia is about scientific contribution, whereas 
reputation in open source is about software work. Scientific 
contribution, for better or worse, is most often measured 
through publications and citations, not through other 
artifacts [17]. This has two implications. 

The first implication of indirectness is that contributions 
have to be substantial enough to warrant a publication that 
describes them. Since the bar to publication is relatively 
high, especially in higher quality venues, this seems likely 
to exert pressure to produce larger contributions, resulting 
in many lines of code changes. This is a clear contrast to 
open source where the unit of contribution is the patch and 
contributions are relatively small [31:324]. Indeed open 
source norms encourage contributions to be as small as 
possible.5 Since smaller contributions are easier to 
understand they are easier to integrate and so reduce 
integration costs.  

The second implication of indirectness is that contributions 
must be visible in publications and in citations to those 
publications. Our informants were clear about this (even as 
they indicated they were not necessarily pleased about it): 
they must make their cases through publications and 
citations. Thus even if a source code repository were to 
record their integrated contributions if that contribution 
didn’t result in a publication on which they were an author, 
or if it resulted in shifting citations from one on which they 
were an author to one on which they were not, then 
integration would be counter-motivated. Claims from 
system improvement would not be appropriately divided.  

In seems, then, that for collaboration in scientific software 
work to solve the division of claims problem and motivate 
integration, contributions must remain visible not only at 
the software level but at the publication and citation level. 
This is made even more difficult because papers, unlike 
source code repositories, are static objects; their author lists 
do not change over time and thus integrated contributions 
from those who were not authors would need to occasion a 
new, joint publication and commitment from the original 
authors to direct all citations to that new paper. 

                                                             
5 These norms are summarized, with multiple references, in answer to a 
question about “code bombs” on StackOverflow: 
http://programmers.stackexchange.com/ questions/152733/what-is-the-
term-for-a-really-big-source-code-commit 
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POLICY IMPLICATIONS AND FUTURE RESEARCH 
Science policy makers are looking for tools and approaches 
to improve the efficiency and effectiveness of cyber-
enabled science, including software development. The 
success of open collaborations in open source software 
development and knowledge environments like Wikipedia 
provide interesting templates, and existing policy 
suggestions draw heavily on these analogies [19,32,41].  
However our work suggests reasons to believe that the 
specifics of the scientific reputation environment may not 
adequately motivate academics to integrate their 
contributions, thus failing to meet the hopes held for open 
collaboration. Accordingly we argue that policy should 
address this situation in four ways.   

The first approach is to improve returns for integration 
work. One way is to fund integration directly. For example, 
funding agencies could provide funding exclusively for 
integration, bringing together leaders of different projects 
and requiring the creation of joint papers that not only 
describe the integration work but provide an appropriate 
citation target.  A related strategy would be to provide 
funding to groups less as direct sources of software and 
more as ecosystem “stewards” who are motivated to 
incorporate and integrate outside contributions [6].  
Appropriate models for these include foundations such as 
Apache or Debian that attend to questions of the software 
ecosystem but do not directly develop software, aiming to 
side-step conflicts between core insiders and outsiders.  
Finally, given such stewards aiming for integration, 
scientific publishers could exploit the importance of 
publication and require contributors to go beyond revealing 
their source code and require them to have integrated their 
code into common packages before accepting papers for 
publication (if the claimed contribution is software that 
others can use). A downside of this approach is that 
scientists working in this area might see this funding as 
reducing the money available for their science. 

A second approach would be to promote new integration 
models through architecture. This would imply an explicit 
preference for an ecosystem with minimal cores and most 
functionality delivered through separate components, each 
with their authors clearly identified. Such architectures have 
been recommended for separate reasons [11,34] but our 
work suggests that these architectures may be particularly 
important for collective innovation on scientific software, 
given the difficulties of direct integration. 

A third broad approach would be to attempt to alter the 
academic reputation economy to reduce the disincentives 
for integration. One common suggestion is to reward 
academics for contributions other than journal articles, 
including data sets [35] and, more rarely, software [17]. Our 
work suggests that the specific form of non-journal 
contributions that would be acknowledged would be 
important in encouraging collaboration.  Rather than 
replacing a static journal article with a record for a static 
software contribution, encouraging dynamic repositories 

that facilitate and record small units of contribution may be 
appropriate. The GitHub model of rapid and open forking 
may be more appropriate than a centralized model where 
improvers seek permission to have their improvements 
added. 

A fourth approach, perhaps requiring less alteration to 
existing practice, would be to provide additional resources 
for software-contributing scientists to make their case for 
contribution and to provide disaggregation of contributions. 
Science policy makers can work with journals, conferences 
and professional societies to improve the citation of 
software in publications, specifically encouraging the 
citation of multiple papers or projects whose code or 
approaches have been integrated into the packages actually 
used. This creates a direct visibility for integrated code 
without needing to alter currents practices too widely. The 
software itself could provide the appropriate set of citations, 
keeping track of which code, including integrated code, 
actually ran and providing a set of citations ready for use in 
papers.6 Another resource would be to help software-
contributing scientists gather data on the use of their 
scientific software, through counts of downloads or through 
instrumentation of the code or distributions [28,42]. Ideally 
such data would link to publications and expose integrated 
contributions and thereby allow those making software 
contributions to demonstrate their scientific impact even 
when their code has been integrated, much as services like 
Coderwall and Ohloh re-aggregate contributions in open 
source.   

Finally, the work in this paper also has implications beyond 
science. As CSCW systems continue to facilitate the growth 
of novel collaborations at scale, designers will increasingly 
wrestle with the challenges of working with alternative 
motivational rewards and their varying socio-material 
characteristics. We contribute to this effort by showing that 
different elements of open collaboration—development, 
revealing and integration—should have their motivations 
analyzed separately.  In particular our results should 
encourage researchers and designers to consider how their 
reputation systems realize recognition of contribution at a 
sub-project level and thus support an appropriate sharing of 
the spoils of open collaboration. 
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6 The R statistics community provides part of this solution. Each package 
is encouraged to provide an implementation of the citation() command. 
This returns a citation appropriate for a citation manager and use in papers. 
Currently, however, this command does not return citations for 
dependencies of that package; such an extension is possible. Similarly it 
ought to be possible to analyze a set of analysis scripts and return 
appropriate citations. 
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