
Collaboration and Sharing in Scientific Work February 23–27, 2013, San Antonio, TX, USA

 459

Incentives and Integration In Scientific Software
Production

James Howison
University of Texas at Austin

Austin, TX
jhowison@ischool.utexas.edu

James D Herbsleb
Carnegie Mellon University

Pittsburgh, PA
jdh@cs.cmu.edu

ABSTRACT
Science policy makers are looking for approaches to
increase the extent of collaboration in the production of
scientific software, looking to open collaborations in open
source software for inspiration. We examine the software
ecosystem surrounding BLAST, a key bioinformatics tool,
identifying outside improvements and interviewing their
authors. We find that academic credit is a powerful
motivator for the production and revealing of
improvements. Yet surprisingly, we also find that
improvements motivated by academic credit are less likely
to be integrated than those with other motivations,
including financial gain. We argue that this is because
integration makes it harder to see who has contributed what
and thereby undermines the ability of reputation to function
as a reward for collaboration. We consider how open source
avoids these issues and conclude with policy approaches to
promoting wider collaboration by addressing incentives for
integration.

Author Keywords
Collaboration; software development; incentive systems;
science policy

ACM Classification Keywords
H.5.3 Group and Organization Interfaces: Computer-
supported cooperative work

INTRODUCTION
Software is ubiquitous in science. In current practice,
scientific software originates in a diverse set of production
systems that differ markedly in their incentive structures for
creating, using, sharing, and enhancing software [7,18,24].
A sea change is in progress, however, as science shifts
toward cyberinfrastructure, offering to reduce duplicated
effort and enhance large scale collaboration [3,9,33,43]
both in science and in the production of scientific software.
Science policy makers are seeking understanding of how
best to shape the practice of science to enable this vision.
An open collaboration approach has been successful in the

production of open knowledge in Wikipedia and open
source software [4,27,30]. Given the communitarian
principles of science it is not surprising that open
collaboration is a promising candidate [19,40,41].

This paper examines openness as a road to more effective
collaboration and co-creation of scientific software. We
report on results of an empirical study of the socio-technical
structure of innovation around a central piece of
infrastructural software, the Basic Local Alignment Search
Tool (BLAST). BLAST is arguably one of the most
important pieces of scientific software ever written, to a
large extent enabling the bioinformatics revolution. By
2003 the original paper describing the BLAST algorithm
had become the third most cited paper of all time [38].

Understanding the shifting and sometimes conflicting
incentives for sharing and collaboration in scientific
software will deepen our understanding of coordinating
collaborative work more broadly. This is because “the
republic of science” [29] contrasts with environments
where open collaboration has previously been examined.
The contrast is especially clear in terms of overall incentive
structure. Free revealing through publication, thereby
building long-term academic reputation in science,
contrasts both with the financial incentives common in for-
profit environments, as well as the combination of use-
value, learning and localized reputation motivating open-
source participation [e.g., 37]. By examining the effect of
different kinds of incentives, this paper advances work on
incentives in large-scale collaboration, a key theme of
research in CSCW [e.g., 21].

BACKGROUND

Studies of software work in science/infrastructure
Research in CSCW has recognized the importance of “the
human infrastructure of cyberinfrastructure” [25], including
the environment in which those producing cyber-
infrastructure work. Researchers have, for example,
identified a tension between the academic research goals of
computer scientists and the implementation oriented needs
of domain scientists [14,23] and the need to “synergize”
efforts in production of cyberinfrastructure tools, especially
in shifting, dynamic funding environments [7]. In the
related area of data, research has shown how differential
valuations of data in different scientific fields result in
varying incentives, which are key to understanding data-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CSCW ’13, February 23–27, 2013, San Antonio, Texas, USA.
Copyright 2013 ACM 978-1-4503-1331-5/13/02...$15.00.

Collaboration and Sharing in Scientific Work February 23–27, 2013, San Antonio, TX, USA

 460

sharing practices in different scientific fields [43].
Recognizing academic publication as a primary motivation
is key to understanding the challenges of collaborative
production of scientific software [18]. Perhaps glossing
over these distinctive academic incentives, many have
pointed to the success of open source software development
and argued that it provides a model for sustainability of
software development in science [1,15,20,41].

Incentives in Peer Production
Incentives for participating in open source software projects
have long been a subject of study. Expending effort for no
pecuniary return was initially seen as a puzzle, explained in
early literature in fairly idealistic terms, as supporting a
form of freedom of expression [39], in terms of use value
or “scratching one’s itch” [36], or as symptomatic of a “gift
economy” [36]. As academic attention turned to the
question of incentives, focus began to center on the desire
for reputation, for example, as a labor market signal [26]
that might lead to a better salary. Surveys identified a
complicated mix of incentives, including the desire to build
a skill, share technical knowledge, and participate in a new
form of cooperation [16,22]. Studies looking at the larger
incentive picture have shown a complicated mix of
intrinsic, extrinsic, and use value motivations, with various
effects on developers’ output [37]. Increasingly, open
source developers often participate as paid employees of
commercial firms, who invest in open source for
commercial reasons [45]. Recent work has argued that there
can be separate and different incentives for different
elements of open source work such as production of code,
revealing code and integrating code back into the shared
source tree [5]. In a similar vein, other recent work has
shown varying incentives for joining, contributing to, and
becoming committed to online communities more generally
[21].

As the novelty of open source software development has
worn off, and as the commercial and open source worlds
continue to intermingle, reputation seems to have
reemerged as a primary motivation, as new environments
make it increasingly easy to observe and evaluate others’
work and popularity. For example, the number of
“followers” a developer has is viewed as a signal of status
in GitHub [13]. Indeed, online reputation accounting
systems have emerged (e.g., Masterbranch.com and
Coderwall.com) making reputation even more visible and
explicit.

Recent work in scientific software has also shown a
complicated mix of incentives in which reputation features
prominently [18]. Yet in the scientific world there is the
added twist that scientists, who write most of their software
themselves, tend to be motivated by scientific reputation,
not reputation in the software world. A physicist writing
software gets little or no reputational credit unless the
software enables physics work that enhances one’s
reputation as a physicist. This shift—working in one

domain (software) while experiencing reputation incentives
in another (science)—can produce mismatches [18], and
may lead to patterns of activity that do not accord with
those observed in non-scientific contexts. Moreover, these
mismatches may lead to situations that do not serve the
software needs of scientific communities well and provide
difficulties for the vision of shared and communally-
developed software infrastructure driven by open peer
production.

A study of the BLAST innovation system
To explore these issues we studied the development and
improvement of BLAST [2]. BLAST is an important piece
of scientific infrastructure, realized in software code, which
performs the lookup of primary biological sequences,
including DNA and higher-level sequences including amino
acids that make up proteins. These sequences are matched
against annotated databases, especially GenBank, returning
similar sequences based on appropriate statistics. These
lookups facilitate scientific results including the
identification of organisms, assessing gene function and
structure and, in combination with other tools, analyzing
their likely evolutionary origins.

Our specific research questions are the following:

1. Who created, maintains and improves BLAST?

2. What code was integrated with BLAST?

3. What motivates the creation, release and
integration of improvements to BLAST?

Data and Analysis method
The results discussed below are based on an analysis of
semi-structured interviews and inspection of published
literature. We identified those involved with BLAST
through a combination of searching in the published
scientific literature, internet searches for versions of
BLAST, and through asking each interviewee to identify
participants and provide feedback on our searching strategy.
Conscious of the possibility of selection bias due to
examining the published literature we specifically asked
each interviewee if they were aware of unpublished BLAST
versions (discussed below).

We conducted interviews with informants who were well-
placed to provide insight into the origins of improvements
to BLAST and to explain their motivations in undertaking
their work. The interviews were semi-structured using a
protocol with three sections: the background of the
interviewee and the relevant project, the source and nature
of the BLAST innovation and motivations for the
interviewee’s software work, including how they make their
case for impact. We sought permission to record the
interviews for research purposes and all but one participant
agreed. One interview was conducted face to face; the
remaining interviews were conducted over the phone.
Overall we conducted seven interviews with eight
informants, representing seven cases of BLAST
improvements. We identified four other improvements of

Collaboration and Sharing in Scientific Work February 23–27, 2013, San Antonio, TX, USA

 461

BLAST through literature and web-searches but our
requests for interviews went unanswered. In these cases we
have examined published papers and respective websites
(where these exist).

For all interviews we made contemporaneous notes and
developed summary memos immediately afterwards. We
then developed near transcripts of the interviews and
expanded our memos. Simultaneously we were returning to
the research literature and we met periodically to discuss
the interviews in light of this literature. In this way we
developed systematic analysis artifacts focusing on
organizing the cases according to their incentives for
different activities. These are summarized following each
case and together in the discussion. As our results
developed we actively sought alternative explanations,
challenging our emerging understanding. These alternative
explanations, together with the rich case narratives, provide
transparency into our analysis, allowing readers to see and
judge the logic by which we arrive at our conclusions.

In the remainder of the paper we first report qualitative
narratives of cases of BLAST improvement, then
summarize motivations across the cases at each stage
(development, revealing and integration). In the discussion
that follows we consider alternative explanations of these
findings (generality of solutions, integration costs,
intentions and incentives) in their best possible light. We
argue that one explanation, based on incentives, is most
consistent. We then consider the theoretical and practical
implications of that explanation.

RESULTS

NCBI BLAST
BLAST was conceived as an algorithm and piece of
software by a small group of academics at the National
Center for Biotechnology Information (NCBI) together with
a tenure-track biologist at Penn State and a tenure-track
computer scientist at the University of Arizona. The NCBI
was funded by the National Library of Medicine, an
Institute of the National Institutes of Health, and managed
the GenBank DNA database. The software continues to be
developed and maintained primarily by employees of NCBI
most of whom have PhD backgrounds in Mathematics,
Computer Science and Biology. They have shifted career
tracks to software work in the service of science, but
participation in science remains an important element of
their professional identity (as opposed to an identity as
software developers who incidentally work in a science
domain).

Our interviews revealed that the creation of BLAST was
motivated by a combination of use value (for the working
biologists in the group) and academic credit (all authors
sought to publish to build academic reputation). Ongoing
maintenance is motivated as a service project for science.
The developers of BLAST expressed interest in following
the improvements of BLAST created outside of NCBI, and

have integrated some outside contributions (see below) but
have not sought explicitly to encourage the development of
BLAST as a community project.

BLAST+
BLAST+ is a complete rewrite of BLAST by the core
BLAST team at NCBI. It was released in 2009 and
described in a contemporaneous academic publication [10].
The paper argues that the inclusion of new features over
time had undermined the BLAST source code: “the
continual addition of unforeseen modifications made the
BLAST code fragile and difficult to maintain.” [10] The
primary goal of the rewrite was that, “the code structure
should be modular enough to allow easy modification.” In
addition the re-write process enabled the NCBI authors to
add features, including some that had been demonstrated by
external improvements and provided by forked code
versions hosted outside NCBI for some time (FSA-BLAST
and MegaBLAST). The BLAST+ codebase provides
substantial improvements to most, but not all, BLAST
operations and is now the primary non-historical version of
BLAST available from NCBI.

The authors of BLAST+ were motivated by use-value,
although it was a different use-value than the use-value
indicated by working biologists. The use-value here was to
make the NCBI’s overall task of service provision to the
bio-informatics community more efficient and effective.
The production of an academic publication to describe the
code was primarily justified as the appropriate way to
announce and document the new code, but since the NCBI
operates in a quasi-academic environment there was a
secondary motivation of academic credit associated with
the article publication.

WU-BLAST
BLAST, as originally released, lacked the ability to conduct
searches with gaps in the sequence. WU-BLAST was the
first package to provide a “gapped” BLAST. Its author had
originally been employed at NCBI to work on NCBI
BLAST after having been recruited out of a programmer-
analyst position at UC Berkeley. Seeking a more academic
track, he left NCBI for a tenure-track biology position at
Washington University in St. Louis where he intended to
continue to improve BLAST as well as use it to analyze
data produced by the WU Genome Sequencing Center.
WU-BLAST was maintained as a separate project with
performance that earned it a loyal user base. Some of the
features WU-BLAST introduced, including gapped
searches, found their way into NCBI BLAST, although
source code was never integrated. The author recently
renamed the project AB-BLAST, forming a company and
selling commercial licenses.

Digital/Compaq BLAST

As was common with hardware companies at the time,
DEC maintained a vertical technical marketing group
whose focus was to ensure that software relevant to their

Collaboration and Sharing in Scientific Work February 23–27, 2013, San Antonio, TX, USA

 462

market segment ran smoothly on their specific hardware. In
1999, Compaq acquired DEC but the Alpha business
continued to run as it had under DEC. Our informant was a
member of a technical marketing group. In the course of his
work, he increasingly encountered potential and current
clients engaging in sequence analysis. To serve this group
the technical marketing group collaborated with an
engineering group within the old DEC structure that had
created an enhanced version of BLAST based on the NCBI
code. The technical marketing group used that version to
generate benchmarks showing the improved performance of
the Alpha platform in running BLAST. These benchmarks,
and the software improvements, were used to “sell
hardware.” Our informant argued that, from the perspective
of DEC Compaq the incentives for development and
maintenance were financial: they gained access to a market
segment and sought to increase their income.

It was common practice at the time for DEC to provide
enhancements to the originators of the software. Our
informant indicated that this was important for two reasons:
first it ensured that DEC was no longer responsible for
maintaining a forked codebase as the software’s original
authors improved their code. Second, customers were
“more confident” obtaining and using code provided by
original authors. In the case of BLAST that meant
customers preferred to use NCBI BLAST. In keeping with
this practice DEC/Compaq reached out to NCBI and
worked with them to integrate their enhancements into the
mainline NCBI tree; NCBI acknowledges this contribution
in the paper that describes BLAST+ [12].

Mac OS X port
In the late 1990s and early 2000s Apple transitioned to a
Unix based operating system, known as Mac OS X. NCBI
BLAST was ported to Mac OS X primarily by our
informant. Our informant held a PhD in biology and on
graduation had asked “what does a person do that enjoys
biology and computers at the same time?” The majority of
sequencing work at his workplace was done on DEC Alpha
workstations that remained in the office and doubled as
developer machines. Our informant, however, preferred to
work on his Apple laptop. Yet the majority of the emerging
bioinformatics tools at the time did not compile for Mac OS
X out of the box, leading our informant to use time during
his 1 hour daily train commute to port these applications.
He thus became active in a community of like-minded
enthusiasts who ported relevant applications.

Apple provided support to the porting community,
including trips to Apple HQ in Cupertino and Apple
computers. Documents show that Apple was planning to
release their Xserve rack-mounted server and increasingly
saw life sciences as an important market, both in academia
and in industry.1

1 Stewart (2001) “Bioinformatics meets OS X” O’Reilly Media.
http://oreilly.com/pub/a/mac/2001/12/14/macbio.html

Our informant maintained the Mac OS X port for a year or
two, providing binaries via FTP. Apple also distributed
these binaries on DVD images at life sciences computing
conferences to ensure that their customers had access to the
code that worked on their hardware. Our informant
expected that the projects he ported would integrate his
changes, because he wanted to have impact and to reduce
the support workload of making them available and
updating them. He found himself “doctoring” each new
release of BLAST from NCBI, sending his changes to an
NCBI contact that he was introduced to by Apple, who also
wanted the port integrated. Eventually he stopped being
asked for the code and found his port had been incorporated
in mainline NCBI BLAST, as part of the interaction
between Apple and NCBI described below.

A/G BLAST
A/G BLAST was developed by Apple Computer in
conjunction with Genentech, a life sciences company, as a
lead user and collaborator. A/G BLAST was optimized by
Apple to run on the G4 PowerPC chip, which included a
proprietary "Velocity Engine" called "Altivec". As with
DEC/Compaq, many of the improvements were not specific
to Apple chips, but Apple emphasized the role of their
proprietary chips in marketing materials.

Development of this BLAST improvement was thus
motivated by complementary goods sales, i.e., making the
software available in order to facilitate hardware sales.
They hoped to ensure that the G4 chip with its Velocity
Engine was used to its potential for this application. In the
words of a contemporaneous press release introducing A/G
BLAST Apple extolls the virtues of their hardware for
science in a section entitled, “Velocity Engine and Mac OS
X: The Ultimate Science Platform.”2 A/G BLAST was
touted as superior, able to deliver “five times the
performance of the nearest competing desktop system
running standard NCBI BLAST.” 2

The source code for A/G BLAST was freely revealed and
made available through Apple’s websites as well as
distributed at life science conferences. In a manner similar
to the Digital/Compaq Alpha port, because the code only
ran on Apple’s hardware there was no effort to restrict the
availability of this code. Moreover at the time Apple had a
strategic push towards open source software and the open
source community. The relevant group at Apple did publish
academic papers from time to time, but did not publish a
paper describing A/G Blast, nor otherwise attempt to earn
academic credit for the improvements in A/G Blast. Rather
Apple made the code available on an Apple-branded
website and publicizing through press releases and
presentations at industry venues, such as sites and
conferences organized by O’Reilly Media.3

2 http://www.apple.com/pr/library/2002/feb/07blast.html
3 Originally hosted at
http://developer.apple.com/hardware/ve/acgresearch.html and as of May

Collaboration and Sharing in Scientific Work February 23–27, 2013, San Antonio, TX, USA

 463

Apple sought to have its improvements moved back to the
NCBI BLAST, which was, for Apple’s customers, easier to
justify using in academic papers. Moreover the A/G
optimizations could be better kept in sync with the ongoing
development of NCBI BLAST, reducing effort for Apple’s
programmers and ensuring that new features from NCBI
were available to purchasers of the G4 Apple Hardware.
The NCBI BLAST team initially became aware of A/G
BLAST through publicity associated with the O’Reilly
Bioinformatics conference and was eventually invited to
Cupertino where engineers described the Velocity Engine
and other optimizations. NCBI ported these to their main
source tree soon afterwards. As with Compaq’s
contributions NCBI acknowledges Apple’s contributions in
their BLAST+ publication [12].

GPU-BLAST
GPU-BLAST is an effort to exploit the parallelism
available in modern GPU platforms, specifically the
NVIDIA GPU [44]. It was developed by two academics
whose focus is primarily on computational optimization,
and neither considers themselves biologists or bio-
informaticians. Whereas previous attempts to implement
BLAST on GPU hardware have provided significant speed-
ups under some conditions they have not provided identical
results; GPU-BLAST ensures an exact results match with
mainline BLAST.

GPU-BLAST, unlike other BLAST improvements
considered in this paper, was built on the re-modularized
BLAST+ codebase. The GPU-BLAST authors indicated
that the BLAST+ code was very well written and was
relatively easy to modify. They indicated that they only
needed the code itself and did not rely on documentation
nor seek help from NCBI. Nonetheless they did not see that
as a reason to base their work on the BLAST+ codebase,
arguing that the original BLAST code was also well-written
and easy for their modifications. They chose to base their
work on BLAST+ to be up to date, rather than seeking to
exploit the more modular and easier to integrate structure of
the codebase. The authors moved quickly to publish a
description of GPU-BLAST in the academic literature. As
part of that publication they made their source code
available, hosting GPU-BLAST on their own website. That
website is very specific about their expectation that users
would provide academic credit through citations to their
publication: “Please cite the authors in any work or product
based on this material.”

The software is also promoted by the NVIDIA’s GPU
platform developer’s program as part of a bioinformatics
distribution. NVIDIA found the GPU-BLAST software as
they prepared a bid to sell hardware to a large hospital and

2011 still available at
http://developer.apple.com/opensource/tools/blast.html, although
optimizations were eventually integrated into NCBI BLAST. See
http://www.apple.com/pr/library/2002/feb/07blast.html and
http://www.xml.com/pub/r/1327

added it to this collection. Following this NVIDIA donated
“a few cards” to the GPU-BLAST authors, much as DEC
and Apple had before them. Other than this post-hoc
donation GPU-BLAST authors receive no royalties or
financial benefits from their code.

Other Improvements
We identified four additional improvements for which we
were unable to obtain interviews: commercial internal
improvements, and three improvements described in
academic publications (CUDA-BLAST, FSA-BLAST and
CS-BLAST). Multiple informants indicated that they
believed that commercial users of BLAST had internal
improvements which they did not release publicly, while
our informants did not have specific inside knowledge they
indicated their belief that these were motivated by financial
incentives in that they provided competitive advantage to
the firms.

Improvements in the second group were found through
literature searching but we were not able to interview the
authors. In each case the code was released simultaneously
with publication through the author’s own websites.
Although not as reliable as reasoning based on interview
data, we infer a desire to obtain academic credit from the
authors undertaking publication of these articles. In the two
older cases the code is no longer available at the links
provided. However, as with the “gapped” improvement in
WU-BLAST the core NCBI team has incorporated the
ideas, but not the source code, of those publications.

Summary of motivations

Our informants discussed their motivations for the three
activities of development, revealing and integration.

Development was motivated by a range of motivations. One
driver was use value: the improvement was necessary to
support work that the informant wished to undertake.
Another driver was seeking academic credit: by developing
an improvement that would be useful to the academic
community informants hoped to receive reputational
rewards that would advance their careers, including seeking
tenure and promotion. Academic credit could be earned
through improvements to the usefulness of BLAST, but
also more general contributions, such as novel optimization
techniques. In one case development was motivated
because it was simply a fun and enjoyable activity (“there
was no credit that I was competing for”). Finally, one group
of improvements was motivated by a desire to sell
complementary goods and thus increase revenue: if BLAST
performed better on particular hardware then customers
would be more likely to buy that hardware.

Revealing is the action of sharing the code with others.
While one informant argued that they were ethically bound
to reveal code, the other informants argued that revealing
was crucial to access the benefits that had motivated
development. This was true for those motivated by
academic credit: getting the software to users, even if just in

Collaboration and Sharing in Scientific Work February 23–27, 2013, San Antonio, TX, USA

 464

binary form, is crucial to receiving academic credit and,
given the norms of academia, source code revealing is usual
(despite the possibilities it offers to competitors). For those
seeking revenue through complementary goods, revealing
was also necessary. The software already ran and was
available on competing computing platforms; the
optimizations were given away to enhance the perceived
value of buying particular hardware; informants indicated
that the code was released “via PR [public relations].”

Integration involves merging an improvement with the
mainline BLAST. While any improvement could be made
available, only integrated improvements would be
distributed by NCBI. Integration also implied that NCBI
would undertake to maintain the improvement going
forward, accepting it into the scope of the service that they
provide their community. For one group of informants these
were both positive motivations to have their code
integrated. By integrating their customers could have the
knowledge that they were working with “the real BLAST”
making them more comfortable with the correctness and
acceptability of the results. While it was good for hardware
sales to have an optimized code version, it was even better
to have mainline BLAST optimized. Once the code was
integrated, however, any on-going work, such as
synchronizing with new versions, was a cost; if this could
be borne by the BLAST developers that would increase net
revenue.

For another group, however, while reduced costs of
maintenance from integration would be welcome (NCBI
BLAST was the “industry standard”), that benefit did not
outweigh the perceived cost of integration. The question of
who would receive credit for the combined artifact was key,
either from direct ongoing use of the software or through
academic publishing and citation. Since users would be
citing a paper in their academic work, some informants
expected that users would continue to cite the “original”
BLAST paper, rather than the new publication of the
improver. While the possibility of a joint publication was
enticing, in one case it was suggested in our interview that
there was a concern that the original BLAST authors would
not benefit from creating a new publication that would
undermine the citation of their existing papers.

RESULTS SUMMARY
As our cases proceeded we created systematic analysis
artifacts that summarized our answers to our second and
third questions: Was the code integrated? And, what
motivated development, release and integration (if it
occurred)? These artifacts bring our results together in a
systematic manner and we present them in this section.

NCBI BLAST

WU-BLAST

BLAST+

GPU-
BLAST

CUDA-
BLAST

CS-BLAST

Mac OS X Port

DEC/Compaq
BLAST

Apple (A/G)
BLAST

FSA-BLAST

Improvements
branch and return
(code integrated)

Improvements
branch but do not return

(code not integrated)

Time runs from left to
right, but is approximate

and illustrative only

Figure 1: Forking and integration in the BLAST software ecosystem

Figure 1 summarizes the branching structure of the BLAST
improvements we studied. At the core is NCBI-BLAST,
transitioning to BLAST+. We found all improvements to be
based on this line of code. Thus we found all our improvers
sought to base their improvements on the core NCBI
distribution, and to do so on whichever version was most up
to date, transitioning from BLAST to BLAST+ when the
NCBI did.

The path of these improvements can be divided into two
basic structures: those that branch and return, being
integrated with the NCBI code (shown above NCBI
BLAST in light gray) and those that branch but whose code
is not integrated (shown below NCBI BLAST in dark gray).
Those that were not integrated were maintained separately
for some time by their authors, typically having them
available on personal websites. Our informants indicated
that they intended to make their versions available and
update them to be in sync with new versions from NCBI,
but they were not sure how long they would do so; we
found that forks tended to be maintained for relatively short
periods of time and their authors, rather than announcing an
end to the project appear to simply stop updating their
websites.

What can explain the differences in whether the
improvements had their source code integrated? Through
our analysis we developed four competing explanations:
generalizability, integration costs, intentions and
motivational conflicts.

Generalizability. The providers of a popular distribution
may not want to increase the size and complexity of the
distribution unless some large fraction of users will benefit.

Improvements may be too specific to be generally useful.,
so including every improvement would complicate the
codebase too much for too little gain. This provides a
content-based explanation for our observed pattern:
improvements that were generally useful would be
integrated, while more specific improvements would not.
Certainly the commercially motivated computing platform
based improvements, which were all integrated, fit with this
explanation: all uses, if not all users, of BLAST could
benefit from a port to Mac OS X or enhancements by,

Collaboration and Sharing in Scientific Work February 23–27, 2013, San Antonio, TX, USA

 465

DEC/Compaq or Apple/Genentech. However there are
quite general improvements in the cases where the code
was not integrated, including gapped BLAST from WU-
BLAST, the improvements in CS and FSA BLAST and the
code from GPU-BLAST. Thus a content-based generality
does not provide a consistent explanation for the observed
patterns, nor was it emphasized by our informants.

Integration costs. It takes technical effort—sometimes a
great deal of technical effort—to integrate new
functionality into a large, complex piece of software, and to
maintain it over time.

A plausible explanation for why some outside
improvements came to be integrated while others did not is
that some simply required more effort to integrate and were
thus either not considered worthwhile or the improvement
was incorporated by writing code from scratch. Code
written by others can be impenetrable and it can be difficult
to isolate the useful improvements. One key cause of high
integration costs is related to the modularity of the
codebase. The more modular a codebase is the lower
integration costs should be [4]. Our informants indicated
that the original BLAST codebase was fairly monolithic
and that the BLAST+ codebase was clearly more modular
(as intended by its authors). This explanation would thus
predict that code based on BLAST would be less likely to
be integrated than code based on BLAST+. Admittedly we
have only one case of code based on BLAST+, but we have
more cases based on BLAST. In neither condition,
however, does this explanation appear to explain the
observed patterns, in fact the opposite holds. All the cases
of integrated code were originally based on BLAST, while
the case based on BLAST+ was not integrated. If the
integration costs explanation held this pattern should have
been reversed. Given the small number of cases here, in
our opinion it is more telling that our informants did not
emphasize this explanation, focusing far more on
maintenance costs than on integration costs. Either way
integration costs does not seem a sufficient explanation.

Intentions. Improvements were integrated unless their
creator did not intend to have them integrated.

The simplest explanation would be that the authors, as
copyright holders, did not want their code integrated.
However, in most cases the outside contributor clearly
expressed a desire to re-integrate their contributions with
NCBI-BLAST, acknowledging both the on-going
maintenance costs of branches and that potential users
strongly preferred to use “real BLAST” whenever possible.
Nonetheless for those that were not integrated any desire to
integrate was clearly conditional on how integration would
occur, turning on the question of whether and how future
users would acknowledge the outside contributions, as
illustrated in this quote: "the ideal … would be that NCBI
[agrees to] write another paper and have them cite this from
now on ... that would be the ideal..." The last sentence was
inflected in such a way that indicated that such an

undertaking might not be ideal for both sides. Thus the
authors intentions explanation appears consistent but
merely asks a deeper question: why did different authors
place different conditions on their desire to integrate? To
answer that we turn to our data on incentives.

Motivational conflicts. The form of motivational rewards
that participants seek may mean that conditions under
which integration would be mutually beneficial are difficult
to achieve. Specifically, the requirements to access
academic credit undermine the incentive to integrate,
resulting in the maintenance of separate codebases.

Table 1 combines of our findings regarding integration and
incentives: the cases are grouped and shaded according to
their code integration status (as in Figure 1), light gray
showing those that were integrated and dark gray those that
were not. The cells indicate our findings regarding
incentives for the three different elements of participation in
open collaboration [5].

There is a clear association between integration and
incentives: those improvements that were not integrated
were motivated in development and revealing by academic
credit; those that were integrated were motivated in
development and revealing by a mix of motivations, but in
integration by a combination of reducing effort and earning
revenue through sales of complementary goods.

In essence we found that BLAST innovations from those
motivated to improve BLAST by academic reputation are
motivated to develop and to reveal, but not to integrate their
contributions. Either integration is actively avoided to
maintain a separate academic reputation or it is highly
conditioned on whether or not publications on which they
are authors will receive visibility and citation.

Conversely, other motivations (including use-value, fun,
ethics, as well as complementary goods) do not seem to
conflict with integration. In fact these motivational rewards
seem to be consistent with or actively favor integration,
either as a means to reduce on-going maintenance costs or,
in the case of complementary goods, to ensure the highest
level of comfort using the BLAST improvement that helps
sell particular hardware.

We find this explanation to be the strongest: academic
reputation as a motivational reward creates conditions that
are difficult to satisfy in a mutually beneficial manner,
while other motivations do not. This explanation is
consistent with all our cases and it was key to the
explanations that informants themselves provided.

DISCUSSION
Our result is surprising because reputation has been seen as
a key and unproblematic incentive for participation in open
software development, as discussed above [e.g., 5,26,37].
Similarly a reputation economy is key to science, with some
authors going as far as to describe a separate “republic of

Collaboration and Sharing in Scientific Work February 23–27, 2013, San Antonio, TX, USA

 466

science” where reputation and building on each other’s
work replaces the dominance of competition for money in
other domains [30]. This raises two questions: First, why
does reputation appear to be problematic in the production
of scientific software, while use-value, fun, learning and
even money appear to encourage open collaboration?
Second, why does reputation appear problematic for
integration in scientific work but not in open source?

We explore possible answers to these questions by
examining how different incentives, in content and form,
relate to collaboration by using a division of claims
approach [5]. The division of claims approach posits that a
fundamental issue in collaboration is answering the
question of how the overall value resulting from
collaboration is distributed amongst those who have
contributed. To the extent that that division results in
adequate rewards for participants then collaboration will be
possible; if that division is not satisfactory collaboration
will be threatened.

Fun and learning. A number of the incentives discussed
above have rewards that are independent of the overall
performance of the system because they are delivered
immediately. The fun and learning as a motivation was
experienced in the activity itself and existed whether the
code was integrated and the overall project improved or not.
Thus the rewards of these type of motivations don’t have to
be divided or transferred to other participants and such
motivations are particularly well-suited for open
collaboration.

Use-value. The desire of the authors to use their own
improvements is an important motivation. This is well
known from studies of open source software where
developers indicate that they participate to improve the
software for their own use [12,37]. In science, use-value
derives from one’s ability to accomplish (non-software or
domain) scientific work that will eventually be published in
an academic paper. This type of software has been called

“incidental software production” [18] and is clearly
powerful for motivating development. It may not, however,
be necessary to reveal developments because not doing so
may preserve a competitive advantage. In this sense
revealing may cause a reduction in the relative value of the
use-value to the original author. In science, however,
revealing may be a complement to the use-value of
development work to the extent that norms of openness and
reproducibility (or explicit journal/conference policies)
require the full revealing of code in order to publish results
based on it (and thus unlock the scientific use value of the
software work). Integration, however, appears unlikely to
be a complement to use-value (since journals require only
revealing and not integration) and so the decision about
integration is likely to be based on a separate assessment of
on-going costs of maintaining a separate code tree.

Money. Money is a quintessential motivational reward in
part because it facilitates a division of claims easily. This is
clear in the simple case of for-profit collaboration. If two
partners work together to create a valuable system and earn
money by selling it they can divide that money in a way
that provides sufficient reward to each of them.4 Revenue
from complementary goods sales, as observed above, is
more complex but is still a division of claims facilitated by
money. In this case the overall value from the improved
system is sufficient to generate demand for computers to
use the software with. If the software was also sold for
money it would be clear that the customer’s money was
being divided between hardware and software contributors.
Money is ideal for valuing and rewarding contributions
since it can be divided and distributed easily.

Reputation. Reputation, by contrast, is potentially
problematic when viewed through a division of claims
framework. Reputation is something that is enacted by

4 Of course any division is likely a result of power and other strategies but
the simple divisibility of money facilitates these strategies.

Project Motivation for …

 Development Revealing Integration

Integrated Improvements Revenue (sales)
Fun

Revenue (sales)
Ethics

Integrated:
 - Reduce maintenance costs
 - Increase Revenue (sales)

NCBI BLAST
NCBI BLAST+

Academic Credit
Use Value
Academic Service Provision

Academic Service Provision

N/A

Non-integrated
improvements

Academic Credit

Academic Credit

Not integrated:
 - Counter-motivated or highly
conditional due to concerns that
integration would undermine
academic credit

Table 1: Integration status and motivations for development, revealing and integration (shading refers to Figure 1).

Collaboration and Sharing in Scientific Work February 23–27, 2013, San Antonio, TX, USA

 467

others through their future actions, especially the extent to
which they reveal their regard to others. In the context of
BLAST, reputation is an anticipated reward for the
development and revealing of software improvements. The
improvers anticipate that others will come to value the
improvements and therefore regard the improver as a
contributor to science. Such regard is useful for career
advancement, especially in terms of tenure and respect that
leads to jobs, grants and other rewards.
As a motivational reward reputation is not delivered
immediately like fun or learning, nor independently like
use-value. Rather the value of reputation comes over time
and at distance. The fact that reputation is enacted by others
means that it is hard to control, just as it is hard to control
any actions of others. This is a very strong contrast to
financial rewards because once money is received it can be
stored, re-directed and divided. In contrast a partner whose
rewards come as reputation must work hard to cause the
valuable reputation to be redirected or divided, perhaps
even to the extent of correcting others each and every time
they do not adequately divide their regard appropriately
amongst contributors.

The division of reputation is easier to the extent that each
individual’s contribution is clearly marked in the final
product, making a user (or an evaluator) perceive the
multiple contributors. When that is the case integration does
not diminish reputational reward, and in fact may enhance it
by virtue of its inclusion in a more highly-functional
product (as with the expected reputation benefit of having
one’s code included in “real BLAST”). Yet where
individual contributions are not visible in the final product,
there exists a risk that contributions may be undervalued.
Concern over this issue has been seen in sciences with ever-
increasing large author lists [8].

More concretely, integrating a piece of code into an existing
project risks losing the identity and visibility of that
contribution, a concern voiced by an informant that
“improvements would be consumed”. If the existing project
is already firmly associated with its originators, then there
is considerable, difficult work to be done to alter the
behavior of future users in order to have them recognize the
contributions of those whose contributions have been
incorporated.

Reputation in open source and science
In open source the issues with reputation and collaboration
discussed above seem less problematic than in the academic
reputation economy. We see two reasons for this.

The first is that open source projects, and the systems they
use, provide insight into the specific, sub-project,
contributions of contributors. This can be seen in the use of
THANKS files, listing the names of contributors, but even
more clearly in the source code management systems where
contributions are identified by name, allowing a view of
contribution that is disaggregated from the project level. In

this way systems like Coderwall can “reach into” integrated
products and provide an accounting of contribution in a
way that accomplishes a division of claims. Scientific
software projects rarely have open repositories that indicate
authorship, in BLAST any integrations were performed by
core staff under their usernames, not by the author whose
code or idea was integrated.

The second is that reputation is more direct in open source
than in the academic reputation system. In short reputation
in academia is about scientific contribution, whereas
reputation in open source is about software work. Scientific
contribution, for better or worse, is most often measured
through publications and citations, not through other
artifacts [17]. This has two implications.

The first implication of indirectness is that contributions
have to be substantial enough to warrant a publication that
describes them. Since the bar to publication is relatively
high, especially in higher quality venues, this seems likely
to exert pressure to produce larger contributions, resulting
in many lines of code changes. This is a clear contrast to
open source where the unit of contribution is the patch and
contributions are relatively small [31:324]. Indeed open
source norms encourage contributions to be as small as
possible.5 Since smaller contributions are easier to
understand they are easier to integrate and so reduce
integration costs.

The second implication of indirectness is that contributions
must be visible in publications and in citations to those
publications. Our informants were clear about this (even as
they indicated they were not necessarily pleased about it):
they must make their cases through publications and
citations. Thus even if a source code repository were to
record their integrated contributions if that contribution
didn’t result in a publication on which they were an author,
or if it resulted in shifting citations from one on which they
were an author to one on which they were not, then
integration would be counter-motivated. Claims from
system improvement would not be appropriately divided.

In seems, then, that for collaboration in scientific software
work to solve the division of claims problem and motivate
integration, contributions must remain visible not only at
the software level but at the publication and citation level.
This is made even more difficult because papers, unlike
source code repositories, are static objects; their author lists
do not change over time and thus integrated contributions
from those who were not authors would need to occasion a
new, joint publication and commitment from the original
authors to direct all citations to that new paper.

5 These norms are summarized, with multiple references, in answer to a
question about “code bombs” on StackOverflow:
http://programmers.stackexchange.com/ questions/152733/what-is-the-
term-for-a-really-big-source-code-commit

Collaboration and Sharing in Scientific Work February 23–27, 2013, San Antonio, TX, USA

 468

POLICY IMPLICATIONS AND FUTURE RESEARCH
Science policy makers are looking for tools and approaches
to improve the efficiency and effectiveness of cyber-
enabled science, including software development. The
success of open collaborations in open source software
development and knowledge environments like Wikipedia
provide interesting templates, and existing policy
suggestions draw heavily on these analogies [19,32,41].
However our work suggests reasons to believe that the
specifics of the scientific reputation environment may not
adequately motivate academics to integrate their
contributions, thus failing to meet the hopes held for open
collaboration. Accordingly we argue that policy should
address this situation in four ways.

The first approach is to improve returns for integration
work. One way is to fund integration directly. For example,
funding agencies could provide funding exclusively for
integration, bringing together leaders of different projects
and requiring the creation of joint papers that not only
describe the integration work but provide an appropriate
citation target. A related strategy would be to provide
funding to groups less as direct sources of software and
more as ecosystem “stewards” who are motivated to
incorporate and integrate outside contributions [6].
Appropriate models for these include foundations such as
Apache or Debian that attend to questions of the software
ecosystem but do not directly develop software, aiming to
side-step conflicts between core insiders and outsiders.
Finally, given such stewards aiming for integration,
scientific publishers could exploit the importance of
publication and require contributors to go beyond revealing
their source code and require them to have integrated their
code into common packages before accepting papers for
publication (if the claimed contribution is software that
others can use). A downside of this approach is that
scientists working in this area might see this funding as
reducing the money available for their science.

A second approach would be to promote new integration
models through architecture. This would imply an explicit
preference for an ecosystem with minimal cores and most
functionality delivered through separate components, each
with their authors clearly identified. Such architectures have
been recommended for separate reasons [11,34] but our
work suggests that these architectures may be particularly
important for collective innovation on scientific software,
given the difficulties of direct integration.

A third broad approach would be to attempt to alter the
academic reputation economy to reduce the disincentives
for integration. One common suggestion is to reward
academics for contributions other than journal articles,
including data sets [35] and, more rarely, software [17]. Our
work suggests that the specific form of non-journal
contributions that would be acknowledged would be
important in encouraging collaboration. Rather than
replacing a static journal article with a record for a static
software contribution, encouraging dynamic repositories

that facilitate and record small units of contribution may be
appropriate. The GitHub model of rapid and open forking
may be more appropriate than a centralized model where
improvers seek permission to have their improvements
added.

A fourth approach, perhaps requiring less alteration to
existing practice, would be to provide additional resources
for software-contributing scientists to make their case for
contribution and to provide disaggregation of contributions.
Science policy makers can work with journals, conferences
and professional societies to improve the citation of
software in publications, specifically encouraging the
citation of multiple papers or projects whose code or
approaches have been integrated into the packages actually
used. This creates a direct visibility for integrated code
without needing to alter currents practices too widely. The
software itself could provide the appropriate set of citations,
keeping track of which code, including integrated code,
actually ran and providing a set of citations ready for use in
papers.6 Another resource would be to help software-
contributing scientists gather data on the use of their
scientific software, through counts of downloads or through
instrumentation of the code or distributions [28,42]. Ideally
such data would link to publications and expose integrated
contributions and thereby allow those making software
contributions to demonstrate their scientific impact even
when their code has been integrated, much as services like
Coderwall and Ohloh re-aggregate contributions in open
source.

Finally, the work in this paper also has implications beyond
science. As CSCW systems continue to facilitate the growth
of novel collaborations at scale, designers will increasingly
wrestle with the challenges of working with alternative
motivational rewards and their varying socio-material
characteristics. We contribute to this effort by showing that
different elements of open collaboration—development,
revealing and integration—should have their motivations
analyzed separately. In particular our results should
encourage researchers and designers to consider how their
reputation systems realize recognition of contribution at a
sub-project level and thus support an appropriate sharing of
the spoils of open collaboration.

ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under Grant Nos. IIS-1111750, SMA-
1064209, and OCI-0943168.

6 The R statistics community provides part of this solution. Each package
is encouraged to provide an implementation of the citation() command.
This returns a citation appropriate for a citation manager and use in papers.
Currently, however, this command does not return citations for
dependencies of that package; such an extension is possible. Similarly it
ought to be possible to analyze a set of analysis scripts and return
appropriate citations.

Collaboration and Sharing in Scientific Work February 23–27, 2013, San Antonio, TX, USA

 469

REFERENCES
1. Alexander, J. Software Sustainability through

Investment. 2009.
2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and

Lipman, D.J. Basic local alignment search tool. J Mol
Biol 215, 3 (1990), -410.

3. Atkins, D. Report of the National Science Foundation
Blue-Ribbon Advisory Panel on Cyberinfrastructure.
2003. http://www.nsf.gov/od/oci/reports/toc.jsp.

4. Baldwin, C.Y. and Clark, K.B. Design Rules: The
Power of Modularity. Harvard Business School Press,
2001.

5. Baldwin, C.Y. and Clark, K.B. The Architecture of
Participation: Does Code Architecture Mitigate Free
Riding in the Open Source Development Model?
Management Science 52, 7 (2006), 1116–1127.

6. Berente, N., Howison, J., and King, J.L. Report on
Workshop on “Managing Cyberinfrastructure
Centers”. University of Georgia.

7. Bietz, M.J., Ferro, T., and Lee, C.P. Sustaining the
development of cyberinfrastructure: an organization
adapting to change. Proceedings of the ACM 2012
conference on Computer Supported Cooperative Work,
ACM (2012), 901–910.

8. Birnholtz, J. When Authorship Isn’t Enough: Lessons
from CERN on the Implications of Formal and
Informal Credit Attribution Mechanisms in
Collaborative Research. Journal of Electronic
Publishing 11, 1 (2008).

9. Bower, G.C., Edwards, P.N., Jackson, S.J., and
Knobel, C.P. The Long Now of Cyberinfrastructure. In
World Wide Research: Reshaping the Sciences and
Humanities. MIT Press, Cambridge, MA, 2010.

10. Camacho, C., Coulouris, G., Avagyan, V., et al.
BLAST+: architecture and applications. BMC
bioinformatics 10, 1 (2009).

11. Cataldo, M., Herbsleb, J.D., and Carley, K.M. Socio-
technical congruence: a framework for assessing the
impact of technical and work dependencies on
software development productivity. Proceedings of the
Second ACM-IEEE international symposium on
Empirical software engineering and measurement
(ESEM ’08), (2008).

12. Crowston, K., Wei, K., Howison, J., and Wiggins, A.
Free (Libre) Open Source Software Development:
What We Know and What We Do Not Know. ACM
Computing Surveys 44, 2 (2012), open–source–
software–development–what–we–know–and–what–
we–do–not–know.

13. Dabbish, L., Stewart, C., Tsay, J., and Herbsleb, J.D.
Social Coding in GitHub: Transparency and
Collaboration in an Open Software Repository. CSCW,
(2011).

14. Faniel, I. Unrealized Potential: The Socio-Technical
Challenges of a Large Scale Cyberinfrastructure
Initiative. 2009.

15. Gambardella, A. and Hall, B.H. Proprietary versus
public domain licensing of software and research
products. Research Policy 35, 6 (2006), -892.

16. Ghosh, R.A., Robles, G., and Glott, R. Free/Libre and
Open Source Software: Survey and Study FLOSS.
2002.

17. Hafer, L. and Kirkpatrick, A.E. Assessing open source
software as a scholarly contribution. Commun. ACM
52, 12 (2009), 126–129.

18. Howison, J. and Herbsleb, J.D. Scientific software
production and collaboration. Computer Supported
Collaborative Work (CSCW 2011), (2011).

19. Ince, D.C., Hatton, L., and Graham-Cumming, J. The
case for open computer programs. Nature 482, 7386
(2012), 485–488.

20. Knepper, R. and Repasky, D. Open Source Writ Large:
Advantages of a Foundation Community Model for
Cyberinfrastructure. 2009.

21. Kraut, R.E. and Resnick, P. Building Successful Online
Communities: Evidence-Based Social Design. The
MIT Press, 2012.

22. Lakhani, K. and Wolf, R.G. Why hackers do what they
do: Understanding motivation efforts in Free/F/OSS
projects. 2003.

23. Lawrence, K.A. Walking the Tightrope: The Balancing
Acts of a Large e-Research Project. Computer
Supported Cooperative Work 15, 4 (2006), 411.

24. Lee, C.P., Bietz, M.J., Derthick, K., and Paine, D. A
Sociotechnical Exploration of Infrastructural
Middleware Development. (2012).

25. Lee, C.P., Dourish, P., and Mark, G. The human
infrastructure of cyberinfrastructure. Proceedings of
the 2006 20th anniversary conference on Computer
supported cooperative work, ACM (2006), 483–492.

26. Lerner, J. and Tirole, J. Some simple economics of
Open Source. Journal of Industrial Economics 52, 2
(2002), -234.

27. MacCormack, A., Rusnak, J., and Baldwin, C.Y.
Exploring the Structure of Complex Software Designs:
An Empirical Study of Open Source and Proprietary
Code. Management Science 52, 7 (2006), 1030.

28. McConahy, A., Eisenbraun, B., Howison, J., Herbsleb,
J.D., and Sliz, P. Techniques for Monitoring Runtime
Architectures of Socio-technical Ecosystems.
Workshop on Data-Intensive Collaboration in Science
and Engineering (CSCW 2012), (2012).

29. Merton, R.K. and Sztompka, P. On Social Structure
and Science. University of Chicago Press, 1996.

30. Merton, R.K. The Matthew effect in science, II:
Cumulative advantage and the symbolism of
intellectual property. Isis 79, 4 (1988), 623.

31. Mockus, A., Fielding, R.T., and Herbsleb, J.D. Two
Case Studies Of Open Source Software Development:
Apache And Mozilla. ACM Transactions on Software
Engineering and Methodology 11, 3 (2002), -346.

32. Morin, A., Urban, J., Adams, P.D., et al. Shining Light
into Black Boxes. Science 336, 6078 (2012), 159–160.

Collaboration and Sharing in Scientific Work February 23–27, 2013, San Antonio, TX, USA

 470

33. Olson, G.M., Zimmerman, A., Bos, N., and Wulf, W.
Scientific Collaboration on the Internet. 2008.

34. Parnas, D.L., Clements, P.C., and Weiss, D.M. The
modular structure of complex systems. IEEE
Transactions on Software Engineering 11, 3 (1981),
266.

35. Piwowar, H.A., Vision, T.J., and Whitlock, M.C. Data
archiving is a good investment. Nature 473, 7347
(2011), 285–285.

36. Raymond, E.S. The Cathedral and the Bazaar. First
Monday 3, 3 (1998).

37. Roberts, J.A., Hann, I.-H., and Slaughter, S.A.
Understanding the Motivations, Participation, and
Performance of Open Source Software Developers: A
Longitudinal Study of the Apache Projects.
Management Science 52, 7 (2006), 999.

38. Science Watch. Twenty Years of Citation Superstars.
Science Watch 14, 5 (2003).

39. Stallman, R. and others. The GNU manifesto. Dr.
Dobb’s Journal of Software Tools 10, 3 (1985), 30–35.

40. Stewart, C.A., Almes, G.T., and Wheeler, B.C., eds.
NSF Cyberinfrastructure Software Sustainability and

Reusability Workshop Report. 2010.
http://hdl.handle.net/2022/6701.

41. Stodden, V., Donoho,, D., Fomel, S., et al.
Reproducible Research. Computing in Science and
Engineering 12, 2010, 8–13.

42. Thain, D., Tannenbaum, T., and Livny, M. How to
measure a large open-source distributed system.
Concurrency and Computation: Practice and
Experience 18, 15 (2006), John Wiley and Sons Ltd.–
2019.

43. Vertesi, J. and Dourish, P. The Value of Data:
Considering the Context of Production in Data
Economies. CSCW 2011, (2011).

44. Vouzis, P.D. and Sahinidis, N.V. GPU-BLAST: Using
graphics processors to accelerate protein sequence
alignment. Bioinformatics, (2010).

45. Wagstrom, P., Herbsleb, J.D., Kraut, R.E., and
Mockus, A. The Impact of Commercial Organizations
on Volunteer Participation in an Online Community.
Presentation at the OCIS Division, Academy of
Management Conference, (2010).

