2016 9th International Workshop on Cooperative and Human Aspects of Software Engineering

Do open projects “break the mirror”’? :

Re-conceptualization of organizational configurations in
Open Source Software (OSS) production

Eunyoung Moon and James Howison
School of Information
University of Texas at Austin
Austin, Texas, USA
eymoon@utexas.edu , jhowison@ischool.utexas.edu

ABSTRACT

The mirroring hypothesis predicts that loosely-coupled developers
will develop a loosely-coupled software system. However,
empirical studies have brought confusing results about the
mirroring relationship in open source software (OSS) production:
loosely-coupled OSS contributors have developed a tightly-
coupled system, deviating from theoretical prediction, but are still
successful. This study aims to provide better understanding about
“breaking the mirror” in community-based OSS production in
which there is no significant corporate participation. We propose it
is not the mirroring hypothesis that is broken, but the manner in
which we conceptualize and measure organizational configurations
in OSS production.

CCS Concepts

* Human-centered computing— Collaborative and social
computing

Keywords
Open Collaboration, Open Source Software, Software Design,
Organization Design.

1. INTRODUCTION

The relationship between the structure of organization and the
structure of the system has been of great interest across many fields
including system design and organization design. Theorists have
formulated the correspondence between two structure is desirable
or ought to exist in order to improve performance, which is known
as Conway’s law [5]. Cataldo, Herbsleb, & Carley (2008) [3] in
their study on socio-technical congruence found that when there
was congruence between coordination mechanisms and
requirements, software development tasks were more rapidly
completed, as measured by the resolution time of modification
requests. Colfer & Baldwin (2010) formally define the mirroring
hypothesis [4] that predicts the organizational factors—firm and
team co-membership, physical co-location, and communication
links—will be mirrored in technical dependencies of a system
under development. The mirroring relationship between two
structures occurs because coordinating product design decisions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

CHASE'l6, May 16 2016, Austin, TX, USA

Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 978-1-4503-4155-4/16/05...$15.00

DOI: http://dx.doi.org/10.1145/2897586.2897593

requires communication among the developers who make those
decisions.

However, Colfer & Baldwin (2010)’s review on the mirroring
hypothesis [4] brought confusing results in open collaboration:
loosely-coupled OSS contributors have developed tightly-coupled
software systems, but are still successful.

The purpose of this study is to elaborate and re-conceptualize
organizational configurations in community-based OSS
production. We propose it is not the mirroring hypothesis that is
broken, but the manner in which we conceptualize and measure
organizational configurations in OSS production. Our preliminary
study provides evidence that the mirror was not broken because the
mirroring hypothesis held in our close observation of software
work, using our re-conceptualization of organizational
configuration. We argue that the appearance of a broken mirror
stems from conceptualizing organizational structure as if it is static
or predetermined.

2. THE RESEARCH OPPORTUNITY
2.1 Current stage of knowledge about the

mirroring hypothesis in OSS production

In the context of OSS production, researchers have assumed that
OSS contributors share few or no organizational factors because
developers are geographically dispersed and rarely meet face-to-
face. In this path of reasoning, researchers have identified the
organizational form of OSS projects as loosely-coupled, and the
organizational form of proprietary software development as tightly-
coupled [4;11]. Following the mirroring hypothesis, the emergent
architecture of OSS system will have fewer connections between
modules than proprietary systems, corresponding to the
organizational forms. Without loosely-coupled system design, the
argument runs, open collaboration, unable to draw on tightly
coupled organization, would break down, resulting in failed
projects.

However, a review on the mirroring hypothesis [4] found that many
cases of open collaboration clearly challenged the hypothesis,
“breaking the mirror”. The current stage of knowledge about the
mirroring hypothesis is that we have an accumulation of empirical
findings that OSS practices deviate from theoretical prediction.
However, researchers have not yet developed a compelling
theoretical argument to account for unexpected phenomenon.
Hence, it still remains a challenging and interesting question: “How
are tightly-coupled design decisions or tasks coordinated in the
relative absence of shared organizational factors?”

Another study [14] suggests that organizational circumstances—
the way the work is done for a particular episode—are “fluid” on a

continuum over time between tightly-coupled and loosely-coupled
in OSS production. The authors argue that the fluidity of open
development belies efforts to relate organizational structure and
product structure because, unlike formal organizations, there may
be no particular structure that persists over time. The next section
provides greater details of how this study proposes to extend the
perspective on organizational circumstances [14] and to test it as an
explanation for the ability of successful open projects to appear to
“break the mirror™.

2.2 Research Questions

Researchers have assumed that organizational forms of
community-based OSS production are fixed as loosely-coupled as
if they are static and predetermined [e.g., 4;11]. This approach
implies that interactions among OSS contributors are shaped by
system structure [18], overlooking how interpretation and social
interests shape technology production through social interactions
among people [16]. Such a persistent assumption stems from the
perspective that organizations are “containers” for the work that is
done in them [21].

This study seeks to explore “organizational configurations™ defined
as “any multidimensional constellation of conceptually distinct
characteristics that commonly occur together” [12:p.1278]. With a
configurational approach, this study proposes to take a dynamic,
complex view of how work is organized over time, drawing on the
Weick’s perspective on organization as organizing [19] and thus
changeable (albeit somewhat regularized). Organizational
configurations have a nuanced meaning referring to the conditions
surrounding the process of organizing. In contrast, structures or
forms, which have been used by previous studies, have more
connotation of being fixed, and reify them as static, unitary objects.

Taking a fine-grained perspective that distinguishes changes over
time in organizing work in an OSS project, we develop and test the
hypothesis: what is broken is not the mirroring hypothesis but the
manner in which we conceptualize and measure organizing in OSS
production.

Our first two research questions address each side of the mirroring
hypothesis over time. We first examine the structure of the product
over time, and then we examine organizational configurations over
time.

RQ1: To what extent does software coupling change over time in
an OSS project?

In particular we seek to identify periods in which software coupling
changed significantly, rather than mere random drift over time.
Given the mirroring hypothesis and the assumption that OSS
projects are loosely-coupled organizationally, we specifically
identify inter-release periods that lead to the software becoming
significantly more tightly-coupled.

Organizational configurations require more detailed, qualitative
investigation, accordingly we are able to examine only part of the
life of the project. RQI enables us to identify periods where
significant changes occurred, therefore we ask,

RQ2: What, if any, are the differences in the emergent dimensions
of organizational configurations between the period in which
software coupling rose (the focal period) and the period just
preceding it?

In OSS production, the way that the work is done constitutes the
organization [21]. Hence, this study considers that organization is
enacted in each episode in which organization is enacted [19;21].

20

Hence, this study considers that organizational structure, for any
time period, of an OSS project is an aggregate of organizational
configurations of each work episode (see Figure 1). Here, episodes
are defined as “events, processes and practices that occur over time
and have a beginning and an end” [1:p.2]. Since our re-
conceptualization of organizational configurations is at the episode
level, we dive deeper into the data to examine how work was done
at the episode level.

RQ3.1: How was work organized for each episode during the focal
period?

Finally, to answer the unanswered question from the mirroring
hypothesis in open collaboration: “How are tightly-coupled design
decisions or tasks coordinated in the relative absence of shared
organizational factors?”, we seek to investigate whether and to
what extent each dimension of organizational configurations is
associated with the different organizational process of software
work to make a decision about software design [4; 5] at the level of
work episode situated in contexts, rather than abstract,
deterministic relationships between two structures that transcend
settings [15].

RQ3.2: To what extent are each emergent dimension of
organizational configurations associated with different
organizational process of software work in the work episodes
during the focal period?

Work episode resulting in work outcome

I
|
. \
The previous period The focal period that developed focal release
|
|

Previous release Focal release

Inter-release period Inter-release period

» time(t)

Note:
We refer to any period in which software coupling rises significantly as a “focal period”.

Figure 1. Identification of work episodes that occurred during
the specific focal period that developed an OSS system
becoming significantly tightly-coupled.

3. EXPLANATORY SEQUENTIAL MIXED
METHODS

This study employs explanatory sequential mixed methods. The
purpose of the explanatory sequential design is that qualitative data
helps explain or build upon initial quantitative results (see Figure
2). In this design, researchers identify specific quantitative findings
that need explanation of why these results occurred [6].

We draw on theoretical sampling rather than random sampling,
considering the purpose of this study is to discover and account for
a phenomenon of interest. Our sampling frame was chosen to
maximize the range of information and unexpected insights
uncovered by the current stages of our knowledge about the
mirroring hypothesis in community-based OSS production.

Theoretical sampling considers the OSS project founded by
volunteers. It is significant to note that the term OSS project merely
denotes that the projects release the code under open source license.
That does not necessarily mean it has been developed by
geographically dispersed, sporadically available volunteers. Rather
the term OSS encompasses OSS projects initiated by firms in which

a set of developers who share firm co-membership, often work at
the same site, and have rich, interpersonal communication through
work-related activities within the firm. For this reason, we examine
a set of projects making similar applications and calculate the
coupling of the software and the size of the contributors; we sample
a project that has the largest number of contributors despite the
highest software coupling.

<Overview of a two-phase design>

Quantitative Qualitative

<The steps of the design=>

quan quan QUAL QUAL Interpretation
Data —— Data ——— Data —— Data —— ofLCnlirc
Collection Analysis Collection Analysis Analysis

+ Sequence: Quantitative = Qualitative

+ Weight: QUALITATIVE

= Notation: Uppercase letters are used to signily relatively greater emphasis is on the
qualitative phase in this proposed design

Figure 2. Explanatory sequential design [Adapted from [7]
Figure 4.3]

3.1 Phasel

The goal of phase 1 is to identify the relevant phenomenon, the
specific focal periods in which a system became significantly
tightly-coupled. To do so, we collect and analyze measurement of
software coupling over all releases within sampled OSS projects.
To obtain software coupling, we produce a Design Structured
Matrix (DSM) with Scitools' at the source file level. Then, we
wrote a program in Numpy to implement the algorithm, [11;13]
called “propagation cost”. Then, we employ statistical tests on the
series of coupling measures: 1) cluster analysis and 2) a subsequent
test to identify the specific focal periods that developed a system
becoming significantly tightly-coupled (RQ1). If underlying
distribution of data that emerge from cluster analysis satisfies the
assumption of parametric test, we perform t-test or ANOVA.
Otherwise, we use non-parametric test such as Mann-Whitney U
test or Kruskal-Wallis H test (Table 1).

Table 1. A subsequent test to be performed, depending on
underlying distribution of cluster that emerges from the

Cluster Analysis
Number of Parametric test Non-parametric
Cluster test
Two t-test Mann-Whitney
One-way p
More than two ANOVA Kruskal-Wallis

3.2 Phase?2

3.2.1 Release level analysis

Once the specific focal periods are identified, our attention turns to
gaining a broad understanding of organizational configurations
between the inter-release periods: 1) the previous period right
before software coupling became significantly tightly-coupled, and
2) the focal period that resulted in a dramatic increase in software
coupling (see Figure 1). We focus on characterizing the
organizational configurations to compare between the successive
periods (RQ2). To do so, we collect multiple sources of public

! The tool is distributed by Scientific Toolworks, Inc.

WWW.Scitools.com

21

archival data to familiarize ourselves with the work done in the
period. We then crafted an interview protocol to explore how work
was done. Taking a semi-structured, artifact-based approach, we
tailored our interview protocol for each interviewee, and interview
OSS contributors who made most of commits during the previous
period, those who made most of commits during the focal period,
and those who made commits for both periods, for relative
comparison of organizational configurations at the release level.

3.2.2 Work episode level analysis

We identify work episodes resulting in work outcomes that
occurred during the focal period. The work episodes are identified
from multiple sources of qualitative data including public archival
records (e.g., the Release Notes, the README file, and Pull
Requests), patch messages sent to the project mailing lists, commit
logs, and semi-structured artifact-based interviews. Here, work
outcomes are defined as changes made to the software project’s
shared source code repository for a particular work episode,
building on Howison's (2009) [9] definition of task outcome—"the
actual change to the group’s shared outputs which occurs as a result
of the work directed towards it” (p.73). We define a work episode
resulting in work outcomes as the process to make a set of
commit(s) such as a patch (a Pull Request) or a direct check-in of
the code, which is applied to the project source code repository.

We define a beginning of a work episode that triggered creating a
patch (or a Pull Request), for instance, user’s feature requests or
bug reports. However, not all patches are initiated by users’ feature
requests or bug reports. In that case, submitting a patch (or a Pull
Request), which was initiated by the author of the patch, triggers a
work episode. The process of working on the submitted patch (or
the Pull Request) by reviewing it and asking for tweaks, captures
the middle of a work episode. Finally, applying the patch (or the
Pull Request) to the source code repository is an ending of a work
episode. In other cases, OSS developers may not send a patch
message or a pull request but directly check-in the code. In those
cases, we will analyze the commit logs to investigate what led them
to write the code (see Figure 3).

The elements of Wark Episades resulting in work outcomes

Without sending a parch message (o Pull Request)

<« - E

A beginning of
a Work Episode

Check-in code

An ending of

A m\dfile of a Work Episode aWork Episade

I case of sending a patch message (or Pull Requesty

Feature request

~ Applyinga patch
to the source
_ code repository.

2 ~ Submitting a ‘The process of working on
: patchforaPull] thesubmitted patch
i Request) {or the Pull Request)

An ending of
a Work Episode

A beginning of

3 A middle of a Work Episode
a Work Episode

Figure 3. The elements of Work episodes resulting in work
outcomes

To create work episodes resulting work outcomes, we extract all
commits made during the focal period. Then, we group a set of
commit(s) into a work episode resulting in a work outcome, using
a spreadsheet program. Once we exhaustively create the work
episodes, we seek to explore the emergent dimensions of
organizational configurations in the work episodes during the focal

period(s) that developed the OSS system becoming significantly
tightly-coupled (RQ3.1) (see Figure 1). In doing so, we start with
three dimensions of organizational configurations from literature:
1) work co-membership outside the OSS project, 2) physical and
temporal co-location, and 3) rich, interpersonal communication [4],
allowing other dimensions to emerge from data. Then, we calibrate
each dimension of organizational configurations, quantitizing
qualitative data [17]. We assign the value in the interval between 0
and 1 for each dimension of organizational configurations in the
work episodes. For instance, we compute the ratio of OSS
contributors involved in the episode that shared membership in an
organization (e.g., a firm). For instance, if three contributors were
involved in the work episode 1, and two contributors had work co-
membership outside the OSS projects, working for the same
company, then, we will assign the value of 0.67. The continuous
value 0.67 denotes work co-membership partially shared among
those who involved in the work episode 1. Then, we convert it
categorical value—"*more presence” in work co-membership. In
this way, we will calibrate physical and temporal co-location to
compute the ratio of those who were co-located in the work
episodes, and then, convert it into categorical data. For other
dimensions of organizational configurations such as division of
labor, and rich, interpersonal communication, we will assign the
value of 0 or 1 to denote absence or presence. For instance, based
on archival data records which work outcomes were produced by
whom, we will assign the value 0 or 1 in the work episodes. The
example of categorical values to denote the degree of absence (or
presence) of organizational configuration dimensions is shown in
Table 2.

Table 2. Converting the continuous value into the categorical
value for each emergent organizational configuration
dimensions in the work episodes

The continuous Categorical value

value

1.0 Full presence
0.80 Mostly presence
0.60 More presence
0.40 More absence
0.20 Mostly absence
0.00 Full absence

Next, we seek to identify and analyze the patterns between the
dimensions of organizational configurations and the organizational
process of software work to understand how work was actually
done (RQ3.2). To do so, we code the organizational process of
software work in the work episodes “tightly-coupled™, if it was
impossible to make a decision about software design without
ongoing interaction with others. We code it “loosely-coupled”, if
there was simple acknowledgement to merge the submitted patch
or notification that commits were pushed without having to affect
other’s work or ongoing interaction. However, we were not able to
classify all work episodes as either tightly-coupled or loosely-
coupled due to the nature of the work. For instance, updating
copyright or authorship does not need making a decision about

2 http://savannah.gnu.org/git/?group=findutils

3 https://github.com/ggreer/the_silver_searcher

22

software design. In this case, we code it as “Neither”. Then, we
perform the Chi-square test to see whether there is any significant
relationship between each dimension of organizational
configurations and different organizational process of software
work with respect to whether it required to make decisions about
software design or not. If it is significant, we report to what extent
two variables are associated with each other with Phi coefficient.
Given that these variables are measured categorical data, the chi-
square test is well-suited to investigate if there is a relationship
between two categorical variables—each dimension of
organizational configurations and organizational process of
software work.

3.3 Interpretation phase

In this stage of analysis, we merge the findings from phase 1 and
phase 2. We look for similarity and differences of organizational
configurations in which developed a system becoming significantly
tightly-coupled across different projects [8]. This comparison will
be based on a combination of the quantitative statistical results, the
qualitative findings about organizational configurations, and the
association between organizational configurations and the
organizational process of software work.

4. PILOT STUDY: GNU grep

We present our findings from our pilot study of GNU grep. GNU
grep was identified as the project that has the largest number of
contributors despite the highest level of software coupling in
command-line searching utility—GNU findutils?, the silver
searcher’, regexxer* (See Figure 4). The GNU grep project is not a
large project in terms of Lines of Code (LoC), however, it is
reasonable to study, given that a vast majority of OSS projects are
either small or medium, and only a minor fraction of projects are
large [2].

2. Obtaining descriptive statistics of the
project & the number of committers

code repository w
L. git clunc‘ /
3. Automatically produce a
Design Structure Matrix, A program
4. Obtain software metrics [RGFTHETENUNIT5)2

such as LoC and the
number of files

Figure 4. The process to identify the project that has the large
number of contributors despite the highest level of software
coupling

4.1 Phase 1

All releases of GNU grep available on git and the main GNU ftp
server were downloaded. We downloaded a total of 28 releases over
20 years. Using a Scitool, a DSM for each release was produced at
the source file level. Then, each matrix was computed to obtain the

Remote source

6. Comparison of
prospective projects

Case
selection

5. Computation of a
matrix to obtain the val
of software coupling

6. Import git logs to the (propagation cost)

databases and mining logs
with the keywords to obtain
the number of contributors
in the codebase

4 http://regexxer.sourceforge.net/

value of software coupling with a program written in Numpy that
implement the algorithm of propagation cost. All values of software
coupling were entered into SPSS program, and we obtained a graph
that tracks the evolution of grep’s software coupling over all
releases (see Figure 5).

100 00

B80.00-]

60.00-]

40.007]

The level of software coupling (%)

20.007]

Tl T T

TT T T T T T T 1
4 551525354 6 6162637 8

TELTLLTT T TEI
91011 121314 151617181920 21

GNU grep's release number

Figure 5. The evolution of grep’s software coupling over
releases. [Note: on the X-axis the big number 2 was omitted to
increase readability]

A hierarchical cluster analysis using Ward’s method and squared
Euclidean distance produced three clusters. Because the underlying
distribution of three clusters did not satisfy the assumption of
ANOVA, we performed a Kruskal-Wallis H test to see whether
there are statistically significant differences among clusters on the
level of software coupling. It resulted in the inter-release period
between grep 2.5.4 and grep 2.6 is the focal period developing a
system significantly tightly-coupled. Closer inspection on software
metrics reveals that there was a dramatic decrease in the size, and
large structural changes, removing old, built-in libraries and
importing GNU libraries (see Table 3).

Table 3. Comparison of Software metrics between the
previous release (grep 2.5.4) and the focal release (grep 2.6)

Previous Focal
Software coupling (%) 14.21 44.90
Lines of Code 31,313 8,831
Number of source files 86 22
Number of functions 261 123
Inactive Lines 7,096 1,431
Preprocessor Lines 5,177 560
4.2 Phase 2
4.2.1 Release level analysis
To explore the emergent dimensions of organizational

configurations, we first sought to gain a broad understanding of two
inter-release periods: the previous period (grep 2.5.4) and the focal
period (grep 2.6). Based on the analysis of qualitative data from

5 http://lists.gnu.org/archive/html/bug-grep/

23

public archival data including messages exchanged via bug-grep
mailing list® during two inter-release periods, we crafted the generic
interview protocol that asks about the history of participation in the
project, specified partitioning in the codebase and the division of
labor, and organizational configuration dimensions that organized
software work to apply a set of commit(s) during the inter-release
periods. Then, we employed a semi-structured artifact-based
approach to interview a grep 2.5.4 maintainer who made most of
commits (28 out of 42 commits) during the previous period and one
of two grep 2.6 maintainer who made most of commits (207 out of
218 commits) during the focal period. For each interviewee, we
tailored the generic interview protocol to help each interviewee
achieve fuller development of information [20]. In conducing the
interview, we showed a list of work outcomes and particular
commits made by the grep developers to the interviewees. The
interview with grep 2.5.4 maintainer was conducted via Skype and
then, transcribed verbatim. The interview with one of two grep 2.6
maintainers was conducted via email.

First, to see whether there was work co-membership outside the
project, we looked for the use of affiliation email address when
those maintainers used to post messages or make commits. We
found that one grep 2.6 maintainer used affiliation email address
and our interview revealed that grep 2.5.4 maintainer didn’t have
work co-membership with other grep contributor who made 14 out
of 42 commits. In case of grep 2.6 maintainers, they worked for the
same company. Second, as to the physical and temporal co-
location, there was no public archival records that indicate grep
developers had co-located events. The interview confirmed that
there were no co-located events, and that grep 2.6 maintainers were
not co-located at the same site to work on the project. Third, the
interviews revealed that two grep 2.6 maintainers had rich,
interpersonal communication during the focal period. The
interview revealed that two grep 2.6 maintainers talked a lot via
private email outside the project, as well as bug-grep mailing list
during the focal period to discuss about grep work. Further, we
noted that there was an explicit division of labor and a broad
roadmap in advance during the focal period, based on the analysis
of email messages exchanged via bug-grep. In contrast, the
interview with grep 2.5.4 maintainer reveals that there was no
roadmap during the previous period, and grep contributors
basically went through the patches that were submitted to the patch
manager system.

Table 4. Relative comparison of organizational configuration
dimensions between two inter-release periods

Previous Focal
Work co- No Yes
membership
Co-location No No
Rich,
interpersonal No Yes
communication
Division of No Yes
labor
No roadmap: Going Worked with a
through patches, as
eople submit. roadmap,
p . L Explicit division
The project mailing of labor
list as a primary ’

means of Lots of use of
communication private email
In conclusion, qualitative analysis of archival records and
interviews reveals that there was a change in organizational
configurations from the previous period to the focal period. Table
4 is a summary of data analysis.

Nonetheless, it’s important to note that the interviews in this stage
explored gaining a broad understanding of organizational
configurations at the level of release. Since our re-
conceptualization of organizational configurations is at the episode
level, we sought to examine how work was done in the work
episodes during the focal period.

4.2.2 Work Episode level analysis

We extracted 218 commits made during the focal period (grep 2.6).
Then, we classified those commits into work outcomes, which we
compiled from the analysis of qualitative data including patch
message sent to bug-grep mailing list, bug tracker, patch manager,
and the Release Notes. In case that commits were not sent to bug-
grep or patch tracker system but directly applied to the source code
repository, we created new work outcomes and created a work
episode that made such commits. This process resulted in a total of
36 work episodes.

For each work episode, we recorded the dimensions of
organizational configurations: work co-membership, physical and
temporal co-location, rich, interpersonal communication, and
division of labor. If those who involved in the work episodes had
work-related activities outside the project to produce work
outcomes or shared perspectives or resources (e.g., test cases) that
come from work co-membership, then we recorded there was work
co-membership for that specific work episode. Also, we computed
the ratio of work co-membership shared among those who involved
in the work episode. Then, we recorded whether there was
discussion about the submitted patch (or the Pull Request) before it
was finally applied to the source code repository, or whether there
was a simple notification that the particular patch was just applied
to the source code repository. For instance, we recorded if there was
discussion about certain dependencies of their own work, ongoing
clarification from others, reviews before proceeding with their
work, or they mentioned that they had talked about the work outside
the project mailing list (e.g., private mails or off-list). Those work
episodes were recorded as the ones that had rich, interpersonal
communication, and we assigned the value of 1. In contrast, the
work episodes that have the patches sent to the project mailing list
for simple notification are classified as the ones that did not have
rich, interpersonal communication, and we assigned the value of 0.
The work episodes for which patches were applied to the source
code repository without even simple notification were also
classified as not having rich, interpersonal communication, and we
assigned the value of 0.

In this section, we present an illustrative work episode in which two
maintainers worked in a tightly-coupled way. 9 out of 36 work
episodes (56 out of 218 commits) were related to switching from
built-in libraries to GNU libraries, which is termed
“Gnulibification”. Gnulibification required two grep maintainers to
manually sync with gnulib modules to take advantage of using
updated gnulib modules as of the focal period. For instance, the
work episode resulting in “Gnulibification: The sync with GNU
awk™ illustrates the process to sync grep’s source file (dfa.c) to one
of GNU libraries, GNU awk (GAWK). In the process of adaptation
to GAWK, two maintainers exchanged messages via bug-grep
mailing list, and shared a test case that came from the bug tracker

24

system of the company that both developers worked for. In this
work episode, the patch to adjust API from GAWK required two
grep 2.6 maintainers to further discuss it. This work episode
illustrates tightly-coupled software work that led two grep
maintainers to share and discuss design-relevant information and
solutions.

In short, the illustrative work episode suggests that two maintainers
relied on work co-membership outside the project that enabled
them to share company’s test case easily, direct communication,
and private emails.

Next, as we stated in section 3.2, we coded the organizational
process of software work in the work episodes with respect to
whether it required making a decision about software design with
other developers (tightly-coupled software work), or there was
simple acknowledgement or notification (loosely-coupled software
work). This stage of analysis resulted in 16 work episodes were
tightly-coupled software work, 13 work episodes were loosely-
coupled software work, and 7 work episodes were not either tightly-
coupled or loosely-coupled due to the nature of the work (e.g.,
updating copyright, updating THANKS) (see Table 5).

Table 5. Descriptive statistics of organizational process of
software work in the work episodes

Tightly-coupled 16 444
Loosely-coupled 13 36.1
Neither 7 19.4
Total 36 100

We performed a Chi-square test to examine the association between
each dimension of organizational configurations and the
organizational process of software work in the work episodes. We
do not sum up the values of organizational configuration
dimensions but keep them distinct in the work episodes because this
study views organization is enacted in each work episode [19].

The test reveals that there appears to be an association between
work co-membership and organizational process of software work
(x*=12.857, p<0.05), and it was a moderately strong relation (Phi
coefficient = 0.598). Work co-membership among those who
involved in the work episodes was more likely to present in tightly-
coupled software work. The relationship between rich,
interpersonal communication and organizational process of
software work was significant, and it was a moderately strong
relation (¥>=16.812, p<0.0005, Phi coefficient= 0.683). Rich,
interpersonal communication among those who involved in the
work episodes was more likely to present in tightly-coupled
software work. The division of labor was not significantly
associated with the organizational process of software work. In case
of physical and temporal co-location, statistics was not computed
because none of the work episodes were distributed on this
dimension.

4.3 Interpretation phase

A dramatic, statistically significant increase in the level of software
coupling during the focal period might be considered theoretical
deviation “breaking the mirror”, if researchers assume the
organizational form of OSS is fixed and loosely-coupled. However,
this period saw more work co-membership outside the project and
rich, interpersonal communication via mailing list, and private

email. In addition, two grep 2.6 maintainers shifted towards
traditional coordination mechanisms such as working with a
roadmap, explicit division of labor, and relying on firm co-
membership. This is contrasted with the previous assumption that
in OSS projects virtually all interchange among contributors takes
place in public, and is transparent [4]. The previous period building
grep 2.5.4 is described absence of organizational configuration
dimensions, no roadmap in advance, communication only via the
public mailing list. Activity continued but focused on tasks that
could be accommodated by existing organizational configurations,
such as incremental bug-fixes, which appears to the superposition
of individual work [10]. That is to say, the coupling of
organizational configurations at the level of release ecologically
moved from loosely-coupled to more tightly-coupled,
corresponding to changes in the software coupling. At the level of
work episodes we presented an illustrative work episode in which
grep maintainers worked in a tightly-coupled way. A statistical test
at the level of work episodes revealed that the emergent dimension
of organizational configurations—work co-membership outside the
project and rich, interpersonal communication—were moderately
associated with tightly-coupled software work which required to
make a decision about software design among those who involved
in the work episodes.

5. CONCLUSION

This study proposes to take a more fine-grained perspective on
organizational configurations of OSS production, whereas other
researchers have assumed a pre-determined, fixed organizational
form. Our proposed re-conceptualization of organizational
configurations should help elaborate organizational forms of OSS
production in a more nuanced way. At least it enables us to better
state questions of why the mirror might seem to be broken in OSS
production. Ultimately, it enables us to understand how OSS
practice deviates from expected patterns but why the projects are
still successtul.

6. REFERENCES

[1] Annabi, H., Crowston, K., & Heckman, R. (2008). Depicting
What Really Matters: Using Episodes to Study Latent
Phenomenon. ICIS 2008 Proceedings. Retrieved from
http://aisel.aisnet.org/icis2008/183

Capiluppi, A., Lago, P., & Morisio, M. (2003).
Characteristics of open source projects. In Seventh European
Conference on Sofiware Maintenance and Reengineering,
2003. Proceedings (pp. 317-327).
http://doi.org/10.1109/CSMR.2003.1192440

Cataldo, M., Herbsleb, J. D., & Carley, K. M. (2008). Socio-
technical Congruence: A Framework for Assessing the
Impact of Technical and Work Dependencies on Software
Development Productivity. In Proceedings of the Second
ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement (pp. 2—11). New York, NY,
USA: ACM. http://doi.org/10.1145/1414004.1414008

Colfer, L., & Baldwin, C. Y. (2010, February 18). The
Mirroring Hypothesis: Theory, Evidence and Exceptions —
HBS Working Knowledge. Retrieved September 27, 2014,
from http://hbswk.hbs.edu/item/6361.html

Conway, M. E. (1968). How do committees invent.
Datamation, 14(4), 28-31.

Creswell, J., Clark, V., Gutmann, M., & Hanson, W. (2003).
Advanced mixed methods research designs. SAGE.

(2]

(31

[4]

(5]

[6]

25

[7]1 Creswell, J., & Clark, V. L. P. (2007). Designing and

Conducting Mixed Methods Research. SAGE.

Eisenhardt, K. M. (1989). Building Theories from Case
Study Research. Academy of Management Review, 14(4),
532-550. http://doi.org/10.5465/AMR.1989.4308385

Howison, J. (2009). Alone together: A socio-technical theory
of motivation, coordination and collaboration technologies
in organizing for free and open source software development
(Ph.D.). Syracuse University, United States -- New York.

[10] Howison, J., & Crowston, K. (2014). Collaboration Through
Open Superposition: A Theory of the Open Source Way. MIS
0., 38(1), 29-50.

[11] MacCormack, A., Baldwin, C., & Rusnak, J. (2012).
Exploring the duality between product and organizational
architectures: A test of the “mirroring” hypothesis. Research
Policy, 41(8), 1309-1324.
http://doi.org/10.1016/j.respol.2012.04.011

[12] Meyer, A., Tsui, A., & Hinings, C. R. (1993).
Configurational Approaches to Organizational Analysis.
Academy of Management Journal, 36(6), 1175-1195.

[13] Milev, R., Muegge, S., & Weiss, M. (2009). Design
Evolution of an Open Source Project Using an Improved
Modularity Metric. In C. Boldyreff, K. Crowston, B.
Lundell, & A. I. Wasserman (Eds.), Open Source
Ecosystems: Diverse Communities Interacting (pp. 20-33).
Springer Berlin Heidelberg.

[14] Moon, E., & Howison, J. (2014). Modularity and
Organizational Dynamics in Open Source Software (OSS)
production. AMCIS 2014 Proceedings. Retrieved from
http://aisel.aisnet.org/amcis2014/SocioTechnicallssues/Gener
alPresentations/9

[15] Orlikowski, W. J. (1992). The Duality of Technology:
Rethinking the Concept of Technology in Organizations.
Organization Science, 3(3), 398—427.
http://doi.org/10.1287/orsc.3.3.398

[16] Orlikowski, W. J. (2000). Using Technology and
Constituting Structures: A Practice Lens for Studying
Technology in Organizations. Organization Science, 11(4),
404-428.

[17] Sandelowski, M., Voils, C. 1., & Knafl, G. (2009). On
Quantitizing. Journal of Mixed Methods Research, 3(3),
208-222. http://doi.org/10.1177/1558689809334210

[18] Scranton, P. (1995). Determinism and Indeterminacy in the
History of Technology. Technology and Culture, 36(2), S31—
S53. http://doi.org/10.2307/3106689

[19] Weick, K. E., Sutcliffe, K. M., & Obstfeld, D. (2005).
Organizing and the Process of Sensemaking. Organization
Science, 16(4), 409—-421.
http://doi.org/10.1287/orsc.1050.0133

[20] Weiss, R. S. (1995). Learning From Strangers: The Art and
Method of Qualitative Interview Studies. Simon and
Schuster.

[21] Winter, S., Berente, N., Howison, J., & Butler, B. (2014).
Beyond the organizational “container”: Conceptualizing 21st
century sociotechnical work. Information and Organization,
24(4), 250-269.
http://doi.org/10.1016/j.infoandorg.2014.10.003

(8]

(91

